Instructor: Tony Cahill
Room 205-J, WERC
tcahill@civil.tamu.edu
862-3858

Lectures: MWF 3-3:50 pm, CE 219
Office hours: TR 3-4, or by appointment

Format: Course credit hours: 3; Lecture hours per week: 3; Lab hours per week: 0

Course description (from catalog): Precipitation-runoff processes; watershed and streamflow modeling; frequency analysis; erosion and sedimentation engineering; hydrologic design of hydraulic structures and nonstructural stormwater management strategies.

Prerequisite: Graduate classification in engineering or approval of instructor.

Other readings will be assigned during the term. You should expect to have to read at least on journal article every two weeks in addition to the text. These journal articles will be provided on the course web site. The aim of the journal readings is to give you a sense of what areas of research are active in hydrology currently.

Grading:

- Homework: 35%
- Midterm: 30%
- Final: 35%

There will be various homework assignments during the course. Computer use is required – you just can’t do some of the calculations by hand. The midterm and final will also be take-home exams, since you will need a computer to do them. You can work together on the homeworks, but NOT on the exams.

The midterm will be scheduled at a time we all agree on – I will try to be flexible with regard to your other courses. If you need a firm date because of travel plans, please speak with me.

Attendance: You are graduate students. I do not take attendance. Attendance is your responsibility as a mature adult. Again, please speak to me/email me if you foresee a problem with missing class. For administrative/legal purposes, we will follow Section 7 of the TAMU student rules with respect to attendance.

Course website: https://ceprofs.tamu.edu/cahill/cven627/627intro.html
Topics covered: This course will broadly cover the major hydrology processes active on the surface water component of the hydrologic cycle. These are precipitation, evaporation, vadose zone flow, runoff generation, and in-stream flow. The emphasis will be on the scientific principals behind current engineering practice. By the end of the course, you should

1. understand the scientific principles that determine how engineers model hydrology in practice
2. be able to make informed choices on what processes need to be considered in hydrologic modeling in different circumstances
3. understand what the current open questions/active research areas are in hydrology
4. understand the issues involved in modern hydrologic computer modeling

Official Notices

Americans with Disabilities Act (ADA) Policy Statement
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the Department of Student Life, Services for Students with Disabilities, in Cain Hall or call 845-1637. For additional information visit http://disability.tamu.edu.

Academic Integrity Statement
“An Aggie does not lie, cheat, or steal or tolerate those who do.” Upon accepting admission to Texas A&M University, a student immediately assumes a commitment to uphold the Honor Code, to accept responsibility for learning, and to follow the philosophy and rules of the Honor System. Students will be required to state their commitment on examinations, research papers, and other academic work. Ignorance of the rules does not exclude any member of the TAMU community from the requirements or the processes of the Honor System. For additional information please visit: http://www.tamu.edu/aggiehonor/. Students are expected to understand and abide by the Aggie Honor Code presented on the web at: http://www.tamu.edu/aggiehonor. No form of scholastic misconduct will be tolerated. Academic misconduct includes cheating, fabrication, falsification, multiple submissions, plagiarism, complicity, etc. These are more fully defined in the above web site. Violations will be handled in accordance with the Aggie Honor System Process described on the web site.

The handouts used in this course are copyrighted. By “handouts,” I mean all materials generated for this class, which include but at not limited to syllabi, notes, quizzes, exams, in-class materials, review sheets, and additional problem sets. Because these materials are copyrighted, you do not have the right to copy the handouts unless I expressly grant permission.

Cheating on quizzes and exams will not be tolerated. Cheating will be reported and handled in accordance with the Aggie Honor System Process. Some or all examinations will be closed book; “looking at another student's examination or using external aids (for example, books, notes, calculators, conversation with others, or electronic devices)” during these examinations is a violation of Texas A&M Aggie Honor Code, Cheating, unless specifically allowed in advance by the instructor.

Unless specifically allowed in advance by the instructor, all assignments and homework in this class are expected to be completed based on individual effort. Copying the work of others, including homework, is a violation of Texas A&M Aggie Honor Code, Cheating.