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ABSTRACT 
This study aimed to investigate the relative performance of two models (negative binomial (NB) 
model and two-component finite mixture of negative binomial models (FMNB-2)) in terms of 
developing crash modification factors (CMFs). Crash data on rural multilane divided highways in 
California and Texas were modeled with the two models, and crash modification functions 
(CMFunctions) were derived. The resultant CMFunction estimated from the FMNB-2 model 
showed several good properties over that from the NB model. First, the safety effect of a covariate 
was better reflected by the CMFunction developed using the FMNB-2 model, since the model 
takes into account the differential responsiveness of crash frequency to the covariate. Second, the 
CMFunction derived from the FMNB-2 model is able to capture nonlinear relationships between 
covariate and safety. Finally, following the same concept as those for NB models, the combined 
CMFs of multiple treatments were estimated using the FMNB-2 model. The results indicated that 
they are not the simple multiplicative of single ones (i.e., their safety effects are not independent 
under FMNB-2 models). Adjustment Factors (AFs) were then developed. It is revealed that current 
Highway Safety Manual’s method could over- or under-estimate the combined CMFs under 
particular combination of covariates. Safety analysts are encouraged to consider using the FMNB-
2 models for developing CMFs and AFs. 
 
Keywords: Finite mixture model, negative binomial model, combined safety effects, highway 
safety, crash modification factor 
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1. INTRODUCTION 
Highway safety has been a major research topic in transportation studies since highway crashes 
account for more than 90% of all transportation-related fatalities and cause enormous socio-
economic costs. Recently, increased emphasis has been placed on improving the explicit role of 
highway safety in making decisions on transportation planning, design, and operations. This can 
be achieved by quantifying the safety effects of geometric design elements for various 
transportation facilities, and incorporating the safety information in the planning and design stages 
of the project development process (Bonneson et al., 2007). In this regard, the first edition of 
Highway Safety Manual (HSM) uses the concept of crash modification factor (CMF) to evaluate 
the safety performance for various highway facilities before they are open to traffic (ASSHTO, 
2010).  
 
A CMF represents the change in safety when a particular geometric design element changes in size 
with respect to the base (or typical) condition or some treatment is taken at a problematic site. A 
CMF greater than 1.0 indicates the situation where the design change is associated with more 
crashes whereas a CMF less than 1.0 represents fewer crashes. CMFs can be developed by various 
techniques which include the before-and-after study, cross-sectional study, use of expert panels, 
and regression-based models (Bonneson and Lord, 2005; Li et al., 2010; Shahdah et al., 2014). 
CMFs are ideally to be developed through before-after studies, in particular with empirical Bayes 
(EB) analysis (Hauer, 2010). However, it is nearly impossible to evaluate the CMFs for some 
highway features or treatments using such method in practice, especially when the treatments are 
costly (e.g., pavement width, horizontal curve, etc.). For these highway features, safety analysts 
frequently use cross-sectional analysis, practically using regression model methods, for assessing 
their safety effects. In a cross-sectional analysis, the safety performances of two or several groups 
of highway segments with different characteristics in terms of the feature of interest are compared. 
The difference is attributed to that highway features. In regression models, the safety effects (i.e., 
CMFs) are estimated directly from the coefficients of the crash prediction models or safety 
performance functions (SPFs). Usually, CMFs developed using regression models are believed to 
be less reliable than that with before-after studies, mainly because there are some limitations with 
regression models, e.g., unobserved heterogeneity, confounding variable or omitted variable bias, 
misspecification in functional form, independence assumption, etc. (Hauer 2013; Jovanis and 
Gross, 2008; Lord and Mannering, 2010; Mannering et. al. 2016; Park and Abdel-Aty, 2016; Wu 
et al., 2015; Wu and Lord, 2016). Some researchers have criticized the use of regression models 
for developing CMFs since SPFs cannot capture the cause-effect relationship between variables 
(Hauer, 2010; Hauer 2015). Even though regression models may still remain one of the most 
common methods for developing CMFs in the near future due to the limitations and infeasibility 
of before-after studies (see Lord and Kuo, 2012). As such, it is important to investigate how to 
improve the robustness and accuracy of CMFs developed from regression models.  
 
Negative binomial (NB) model with additive link functions has been commonly used to develop 
SPFs in the past decades, and CMFs are then estimated from the SPFs. Numerous studies have 
used this approach for developing CMFs, including Fitzpatrick et al. (2008), Lord and Bonneson 
(2007) and Washington et al. (2005). On the other hand, Bonneson et al. (2007) and Gross et al. 
(2009) have argued that the interaction between design features should be included in the 
development of CMFs. In line with this effort, Li et al. (2010) tried to incorporate the interactions 
by using general additive models. Addressing this issue, however, is beyond the scope of this study. 
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The commonly used NB model explicitly assumes that each covariate is independent, and the 
model parameters are assumed independent (the terms covariate, variable and treatment will be 
used interchangeably). In addition, with the traditional NB models, the safety effects of variables 
are independent, and the CMFs are multipliable, as the HSM has documented (referred to as HSM 
method thereafter). Once CMFs are obtained for various highway geometric design elements, they 
are applied multiplicatively for adjusting crash frequency estimated from a baseline model. The 
baseline model represents the calibrated statistical model using data that meet specific base 
conditions, such as 12-ft lane width and 8-ft shoulder width for divided rural multilane highway 
segments. Therefore, the final predicted number of crashes is computed as follows: 
 

௙௜௡௔௟ߤ ൌ ௕௔௦௘௟௜௡௘ߤ ൈ ଵܨܯܥ ൈ⋯ൈ ௡ܨܯܥ ൈ  (1)  ܨܥ
 
Where,  

nCMFCMF ,,1  crash modification factors; 

final  final predicted number of crashes per unit of time; 

baseline  baseline predicted number of crashes per unit of time; and, 
ܨܥ ൌ calibration factor to adjust to local conditions. 
 

It is worth mentioning that, however, in practice CMFs may not be completely independent since 
changes in geometric design characteristics on highways are usually not done separately (e.g., lane 
and shoulder width may be changed simultaneously) and the combinations of these changes can 
influence crash risk differently. Although experience in deriving CMFs in this manner indicates 
that the independence assumption is in general acceptable and the resulting CMFs can yield useful 
information about the first-order effect of a given variable on safety, the HSM has cautioned that 
the assumption can lead to over- or under-estimation of actual safety impacts of multiple treatments. 
Recently, efforts have been made to explore the combined safety effects of multiple treatments 
(Park and Abdel-Aty, 2015a; Park and Abdel-Aty, 2015b; Park et al. 2014). It was found that the 
combined safety effects of multiple treatments estimated using the HSM method were usually over-
estimated. 
 
Despite the important role of CMFs in highway safety analysis, there are currently no documents 
that address how CMFs could be derived from the finite mixture models and compared with those 
produced from traditional models, such as the NB models. The finite mixture models, both fixed 
and varying weight parameter models, have been shown to be useful for explaining the 
heterogeneity and the nature of the dispersion in crash data (Park and Lord, 2009; Zou et al., 2013; 
Mannering et al., 2016). More recently, semi-parametric mixture models have been proposed for 
conducting safety analyses (Shirazi et al., 2016; Heydari et al., 2016). Given the superior 
performance of the finite mixture model, there is a need to investigate whether this type of model 
would result in important differences with the development of CMFs. The crash modification 
function (referred to as CMFuntion hereafter) for the finite mixture models is not as simple as that 
in the single NB models since the conditional mean takes on the mix of additive and multiplicative 
terms. Therefore, the main objective of this paper is to compare the relative performance of two 
models (i.e., two-component finite mixture of NB models (FMNB-2) and the NB model) in terms 
of the difference in determining CMFs as a result of different model coefficients. More specifically, 
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this paper describes in details the procedure on how to derive a CMFunction from the FMNB-2 
model and its characteristics are discussed by comparing it with that from the traditional NB model. 
Another objective of this paper is to estimate combined safety effects of multiple treatments (i.e., 
combined CMFs) using FMNB-2 models and compare them with those from NB models, and to 
further develop adjustment factors (AFs) if the safety effects of multiple treatments are found to 
be dependent for FMNB-2 models. 
 
2. DERIVATION OF CMFUNCTIONS 
As mentioned previously, researchers have proposed that regression models or SPFs can be used 
for developing CMFs. This section presents how CMFunctions are derived from NB and FMNB-
2 models, respectively. 
 
2.1. The negative binomial model  
In additive models, such as a linear regression with ̂ߤ௜ ൌ  ௝ݔ መ௝ for a covariateߚ ௜઺෡, the coefficientܠ
is readily interpreted as the effect of a one-unit change in ݔ௝ on the conditional mean. That is, a 

unit increase in ݔ௝  is associated with a ߚመ௝  increase in ̂ߤ௜ . In multiplicative models, such as the 
Poisson or NB regression models, the conditional mean functional form is usually expressed as a 
log-linear form: ln ௜ߤ̂ ൌ  ௜ሻߤ̂∆௜઺෡. In such a case, the difference between two conditional means ሺܠ
induced by a one-unit change in ݔ௝ is no longer constant across sites and depends on the values of 
the covariates. A more convenient way to examine the effect of a covariate is to take the ratio of 
the two conditional means, which results in expሺߚመ௝ሻ . The ratio is now constant across all sites 
without depending on the values of any covariates. Hence, the effect of a covariate is interpreted 
as follows: a one-unit increase in ݔ௝ is associated with a factor of expሺߚመ௝ሻ increase in ̂ߤ௜ (Long, 
1997). In developing the CMF for a covariate ݔ௝, however, we are not interested in the safety effect 
of a covariate ݔ௝ by changing a one-unit, but interested in the safety effect of ݔ௝ when it changes 
from its base condition value. In this case, the CMF for ݔ௝ can be derived in a continuous functional 
form with respect to ݔ௝. Therefore, the CMFunction for ݔ௝ under the NB model is now derived as 
follows: 
 

௫ೕܨܯܥ
ே஻ ൌ

ୣ୶୮ሺఉ෡బାఉ෡భ௫భା⋯ାఉ෡ೕ௫ೕା⋯ାఉ෡೛௫೛ሻ

ୣ୶୮ሺఉ෡బାఉ෡భ௫భା⋯ାఉ෡ೕ௫ೕ
್ೌೞ೐ା⋯ାఉ෡೛௫೛ሻ

ൌ expൣߚመ௝ሺݔ௝ െ ௝ݔ
௕௔௦௘ሻ൧ (2) 

 
Without loss of generality, the subscript ݅  was removed from Equation (2) since the ܨܯܥ௫ೕ  is 

identical for all sites. This way, the ܨܯܥ௫ೕ represents the change in the expected crash frequency 

when the variable ݔ௝ changes from its base condition value, and it follows an exponential function 

with ܨܯܥ௫ೕ ൌ 1 when ݔ௝ ൌ ௝ݔ
௕௔௦௘. If ߚመ௝ ൐ 0, the ܨܯܥ௫ೕ is an strictly increasing function, and if 

መ௝ߚ ൏ 0, it is an strictly decreasing function. This relationship is depicted in Figure 1. 
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Figure 1. The concept of a CMFunction under NB model 

 
The combined CMFs, .

NB
CombCMF , for multiple treatments (i.e., x1, x2, …, xn) can be derived through 

mathematical transformations, as shown in Equation (3). For additional details, please see 
Appendix A. 
 

. 1
NB

Comb nCMF CMF CMF    (3) 

 
2.2. The FMNB-2 model 
Finite mixture models assume that the observations of a sample arise from two or more unobserved 
components with unknown proportions, which allows a great modeling flexibility over traditional 
single aggregate models. The probability density function, mean and variance of the K-component 
finite mixture of negative binomial regression models (i.e., FMNB-K) are expressed as follows: 
 

,௜ܠ|௜ݕሺ݌ દሻ ൌ ∑ ,௜,௞ߤ൫ܤ௞ܰݓ 	߶௞൯ ൌ ∑ ௞ݓ ቈ
୻ሺ௬೔ାథೖሻ

୻ሺ௬೔ାଵሻ୻ሺథೖሻ
൬

ఓ೔,ೖ
ఓ೔,ೖାథೖ

൰
௬೔
൬

థೖ
ఓ೔,ೖାథೖ

൰
థೖ
቉௄

௞ୀଵ
௄
௞ୀଵ  (4) 

௜ߤ ൌ ,௜ܠ|௜ݕሺܧ દሻ ൌ ∑ ௜,௞ߤ
௄
௞ୀଵ  ௞ (5)ݓ

,௜ܠ|௜ݕሺݎܸܽ દሻ ൌ ,௜ܠ|௜ݕሺܧ દሻ ൅ ൫∑ ௜,௞ߤ௞ݓ
ଶ ሺ1 ൅ 1 	߶௞⁄ ሻ௄

௞ୀଵ െ ,௜ܠ|௜ݕሺܧ દሻଶ൯ (6) 
 
Where, 

݅) ௜ = a random variable of ݅th observationݕ		 ൌ 1, 2, … , ݊ሻ;  
∑) ݇ which sum to 1	௞ = weight of componentݓ ௞ݓ ൌ 1௄

௞ୀଵ );  
௜,௞ߤ ൌ exp	ሺܠ௜઺௞ሻ is the mean of component ݇;  
 ;௜ = a vector of covariatesܠ
઺௞ and ߶௞ are the regression coefficients and the dispersion parameter of the NB  
distribution for component ݇; and 
દ ൌ ሼሺ઺ଵ, … , ઺௄ሻ, ሺ߶ଵ, … , ߶௄ሻ, ሺݓଵ, …   .௄ሻሽ is a vector of all unknown parametersݓ,

 
It can be seen that when ߶௞ ൌ ∞ in each component the FMNB-K model reduces to the finite 
mixture of Poisson regression models (FMP-K). The FMNB models, therefore, allow for 

መ௝ߚ ൏ 0 

መ௝ߚ ൐ 0 
 ௫ೕܨܯܥ

1 

௝ݔ
௕௔௦௘ ݔ௝ 
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additional heterogeneity within components not captured by the covariates. The unknown 
parameters can be estimated via either a maximum likelihood estimation method or a Bayesian 
method. In order to determine the number of components (K) in the mixture, a series of models 
with increasing number of components are fitted and then the most plausible model can be selected 
by various model selection criteria: information-based criteria and Bayes factor via marginal 
likelihoods. Park and Lord (2009) and Park et al. (2014) have shown a two-component finite 
mixture of NB regression models (FMNB-2) was quite enough to characterize the uncertainty 
about the crash occurrence and it provided more opportunities for interpretation of the data which 
were not available from the standard NB model. For the model structure and parameter estimation 
method, readers are referred to the aforementioned references.  
 
In the FMNB-2 model, the conditional mean functional form is expressed as ̂ߤ௜ ൌ ௜઺෡ଵሻܠሺ	ෝଵexpݓ ൅
 ෝଶ  are the estimated weight parameters which sum to 1. Theݓ ෝଵ  andݓ ௜઺෡ଶሻ , whereܠሺ	ෝଶexpݓ
interpretation of coefficients is not as straightforward as in the NB model since the relationship 
between the conditional mean and the covariates is a mix of additive and multiplicative forms. The 
effect of an individual covariate on the conditional mean is determined by two sets of interactions 
between parameters and covariates. The difficulty arises because the conditional mean ratio varies 
across all sites, and also depends on the coefficients of the other covariates. Two options can be 
considered when we want to report a single value for the effect of a one-unit change in ݔ௝. One 
option is first to calculate the ratio of the conditional means for all sites and then to take the average 
value. Another option is to evaluate the ratio at selected values of the covariates (e.g., sample 
average). 
 
Analogous to Equation (2), the CMF of ݔ௝ in the FMNB-2 model is expressed as follows: 
 

௫ೕܨܯܥ
ிெே஻ିଶ ൌ

௪ෝభୣ୶୮ቀఉ෡బ,భାఉ෡ೕ,భ௫ೕ೔ା∑ ఉ෡ೖ,భ௫ೖ೔
೛
ೖసభ,ೖಯೕ ቁା௪ෝమୣ୶୮ቀఉ෡బ,మାఉ෡ೕ,మ௫ೕ೔ା∑ ఉ෡ೖ,మ௫ೖ೔

೛
ೖసభ,ೖಯೕ ቁ

௪ෝభୣ୶୮ቀఉ෡బ,భାఉ෡ೕ,భ௫ೕ
್ೌೞ೐ା∑ ఉ෡ೖ,భ௫ೖ೔

೛
ೖసభ,ೖಯೕ ቁା௪ෝమୣ୶୮ቀఉ෡బ,మାఉ෡ೕ,మ௫ೕ

್ೌೞ೐ା∑ ఉ෡ೖ,మ௫ೖ೔
೛
ೖసభ,ೖಯೕ ቁ

 (7) 

 
In this case, the ܨܯܥ௫ೕ differs across sites by depending on the values of covariates. In order to 

obtain a single continuous function of the ܨܯܥ௫ೕ with respect to ݔ௝ like the one in Figure 1, we 

need to fix each covariate (except for the interest covariate ݔ௝) at a selected value. For this purpose, 
we used the sample average of each covariate. This is, ݔ௞௜ values for site i is replaced with ̅ݔ௞ 
which is ሺ1/݊ሻ∑ ௞௜ݔ

௡
௜ୀଵ . This leads the Equation (7) to the following form: 

 

௫ೕܨܯܥ
ிெே஻ିଶ ൌ

௪ෝభୣ୶୮ቀఉ෡బ,భାఉ෡ೕ,భ௫ೕା∑ ఉ෡ೖ,భ௫̅ೖ
೛
ೖసభ,ೖಯೕ ቁା௪ෝమୣ୶୮ቀఉ෡బ,మାఉ෡ೕ,మ௫ೕା∑ ఉ෡ೖ,మ௫̅ೖ

೛
ೖసభ,ೖಯೕ ቁ

௪ෝభୣ୶୮ቀఉ෡బ,భାఉ෡ೕ,భ௫ೕ
್ೌೞ೐ା∑ ఉ෡ೖ,భ௫̅ೖ

೛
ೖసభ,ೖಯೕ ቁା௪ෝమୣ୶୮ቀఉ෡బ,మାఉ෡ೕ,మ௫ೕ

್ೌೞ೐ା∑ ఉ෡ೖ,మ௫̅ೖ
೛
ೖసభ,ೖಯೕ ቁ

 (8) 

 
Following a similar concept, the combined CMF for multiple treatments can also be derived from 
FMNB-2 models. Taking two covariates, ݔ௜  and ݔ௝  (i ≠ j), as an example, the combined CMF, 
௖௢௠௕.௫೔௫ೕܨܯܥ

ிெே஻ିଶ , is shown in Equation (9). 

 

௖௢௠௕.௫೔௫ೕܨܯܥ
ிெே஻ିଶ ൌ ௔ା௕

௖ାௗ
 (9a) 
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ܽ ൌ መ଴,ଵߚෝଵexp൫ݓ ൅ ௜ݔመ௜,ଵߚ ൅ ௝ݔመ௝,ଵߚ ൅ ∑ ௞ݔመ௞,ଵ̅ߚ
௣
௞ୀଵ,௞ஷ௜,௞ஷ௝ ൯ (9b) 

ܾ ൌ መ଴,ଶߚෝଶexp൫ݓ ൅ ௜ݔመ௜,ଶߚ ൅ ௝ݔመ௝,ଶߚ ൅ ∑ ௞ݔመ௞,ଶ̅ߚ
௣
௞ୀଵ,௞ஷ௜,௞ஷ௝ ൯ (9c) 

ܿ ൌ መ଴,ଵߚෝଵexp൫ݓ ൅ ௜ݔመ௜,ଵߚ
௕௔௦௘ ൅ ௝ݔመ௝,ଵߚ

௕௔௦௘ ൅ ∑ ௞ݔመ௞,ଵ̅ߚ
௣
௞ୀଵ,௞ஷ௜,௞ஷ௝ ൯ (9d) 

݀ ൌ መ଴,ଶߚෝଶexp൫ݓ ൅ ௜ݔመ௜,ଶߚ
௕௔௦௘ ൅ ௝ݔመ௝,ଶߚ

௕௔௦௘ ൅ ∑ ௞ݔመ௞,ଶ̅ߚ
௣
௞ୀଵ,௞ஷ௜,௞ஷ௝ ൯ (9e) 

 

Note that under NB models (i.e., Equation 3), the combined CMF for multiple covariates equals 
to the multiplicative of the single ones. However, this is not the case under FMNB-2 models (i.e., 
Equation 9), except when the parameters of the two components are identical, which becomes a 
NB model. 

 

It is important to note that the covariates are considered to be independent within each component 
of an FMNB-2 model, and their coefficients are also estimated independently. However, this does 
not mean that their safety effects are independent. For more discussion on the combined safety 
effects with FMNB-2 models, please see Appendix A. 

 

Finally, the standard error values of the CMFs for both NB and FMNB-2 models can be 
approximated using delta method (Rice, 2007). Assuming the CMFunction is ܨܯܥ ൌ  ሻ, andࢼሺܩ
the expectation of vector ࢼ is ࢼ෡. The variance of CMF at a specific point, ݎܽݒሺܨܯܥሻ, is calculated 
as Equation 10. 

ሻܨܯܥሺݎܽݒ ൎ
డீ൫ࢼ෡൯

డ	ࢼ෡
ൈ ሻࢼሺݒ݋ܥ ൈ ሺݐ

డீ൫	ࢼ෡൯

డ	ࢼ෡
ሻ (10) 

Where, 
డீ൫ࢼ෡൯

డ	ࢼ෡
 = a row vector of partial derivatives of ܩሺࢼሻ at point ࢼ෡; 

  and ;ࢼ ሻ = variance-covariance matrix ofࢼሺݒ݋ܥ

t(•) = transpose of • in the parentheses. 

Particularly, with NB models, the variance of a CMF for feature xj is shown as Equation 11. 

ሻܨܯܥሺݎܽݒ ൎ ൬
ௗீ൫ఉണ෢൯

ௗఉണ෢
൰
ଶ

ൈ ௫ሻߚሺݎܽݒ ൌ ቀሺݔ௝ െ ௝ݔ
௕௔௦௘ሻ ൈ ݁ఉണ

෢ሺ௫ೕି௫ೕ
್ೌೞ೐ሻቁ

ଶ
ൈ  ௫ሻ (11)ߚሺݎܽݒ

 
3. DATA AND MODELING RESULTS 
This section briefly describes the dataset used to develop CMFunctions and documents the 
modeling results. 
 
3.1. Data description  
This study utilized the rural multilane segment crash data on divided highways in California and 
Texas, which were also analyzed during the National Cooperative Highway Research Program 
(NCHRP) 17-29 project (Lord et al., 2009). The California data were originally obtained from the 
Federal Highway Administration (FHWA)’s Highway Safety Information System (HSIS) 
maintained by the University of North Carolina, and the Texas data were obtained from the 
Department of Public Safety (DPS) and the Texas Department of Transportation (TxDOT). The 
dataset contained a total of 2,587 roadway segments with 12-ft lane width only in order to estimate 
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the NB regression models with baseline conditions, and used for developing CMFs for divided 
rural multilane highways. Table 1 shows the summary statistics of the input data for modeling. It 
should be noted that one roadway segment may include intersections if there are no roadway 
geometric changes along the segment. However, intersection and intersection-related crashes were 
all removed from the analysis. 
 
Table 1. Summary statistics of the dataset 

Variable Maximum Minimum Average 
Standard 
Deviation 

Average AADT (F), (veh/day) 89,264 158 13,799 11,281 
Segment length (L), (mile) 11.21 0.1 0.82 1.05 
Median widtha (MW), (feet) 240 1 47.07 29.41 
Right-shoulder widthb (RSW), (feet) 19 0 7.68 1.98 
Injury crashesc 148 0 3.17 6.30 

NOTE:  a Median width includes the left shoulder widths; b Average right-shoulder width (both sides); c Injury crashes 
include only KAB crashes for five to ten years (K=fatal, A=incapacitating injury, and B=non-incapacitating injury). 
 
3.2. Modeling results  
This paper builds on the modeling results of earlier work in Park et al. (2014). With the same data, 
they applied various finite mixture models based on the Bayesian estimation method, and 
concluded that the regular FMNB-2 model and the constrained FMNB-2 model (termed as a 
CFMNB-2) were the best models to describe the dataset. The CFMNB-2 model was estimated by 
constraining the parameters of the median and right-shoulder widths in one component to be zero 
because their estimates were not much different from zero at a 95% significance level. The 

component-wise mean functional form was as follows: ߤ௜,௞ ൌ ௜ܨ௜ܮ௜ݐ
ఉభ,ೖexp	ሺߚ଴,௞ ൅ ܯଶ,௞ߚ ௜ܹ ൅

ଷ,௞ܴܵߚ ௜ܹሻ, where ݐ௜ is the number of years, and ሼ	ߚ଴,௞, ,ଵ,௞ߚ ,ଶ,௞ߚ  ଷ,௞ሽ are the parameters to beߚ
estimated for component ݇ . The modeling results of each model are reproduced in Table 2. 
According to the result for the CFMNB-2 model, it suggests that the population consists of two 
distinct sub-populations whose regression parameters and degrees of dispersion are different from 
each other. With the coefficients estimated in Table 2, the sample averages of the estimated means 
for Component 1 and Component 2 were computed as ̅ߤଵ ൌ 2.96 (crashes/year) and ̅ߤଶ ൌ 4.39 
(crashes/year), respectively. This indicates that Component 1 is associated with smaller-mean 
value observations and Component 2 with higher-mean value observations. The over-dispersion 
parameter in the NB model (߶෠ ൌ 3.225) has been split into two values: i.e., ߶෠ଵ ൌ 6.448 for 
Component 1 and ߶෠ଶ ൌ 1.893  for Component 2. This indicates that the higher-mean value 
observations (Component 2) are more dispersed than the smaller-mean value observations 
(Component 1). 
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Table 2. Modeling results for NB, FMNB-2, and CFMNB-2 models 

Source: Park et al. (2014) 
NOTE:  * Values in parenthesis indicate the standard error of each coefficient. 

 a LL=log likelihood; b AIC=Akaike information criterion; c ML=marginal likelihood. 
 

4. COMPARISON OF THE CMFUNCTIONS 
This section analyzes the CMFunctions developed from NB and FMNB-2 models. Section 4.1 
compares the CMFunction for a single treatment and Section 4.2 discusses the combined safety 
effects and the development of adjustment factors. 
 
4.1.CMFunctions for a single treatment 
Based on the CMFunctions provided in Equations (2) and (8), a comparison was carried out 
between the models with the parameter estimation results in Section 3. For the base conditions of 
each variable, the values recommended in NCHRP Project 17-29 (Lord et al., 2009) were basically 
adopted: i.e., 30ft for median width including left shoulder widths and 8ft for right-shoulder width. 
Since the median width used for modeling also included the left shoulder width for both sides, we 
can use 30ft as a base condition for the median width. The summary statistics of the variables are 
shown in Table 3 along with the respective base condition value. Note that the base condition value 
for the right-shoulder width is very close to the average of the sample data, while the base condition 
value for the median width is much smaller than the sample average. In the dataset, the median 
width greater than 120ft accounted for a very small proportion of the observations (2.24%), but it 
was found that wider median widths greater than 120ft have an unduly influence on crash 
occurrence. Therefore, after a careful consideration and based on previous work on median width 

Estimated 
Parameters 

NB 
FMNB-2 CFMNB-2 

Component 1 Component 2 Component 1 Component 2 

  መ଴,௞ߚ
(Intercept) 

-8.5574 
(0.2397)* 

-8.5272 
(0.2862) 

-6.8581 
(1.2664) 

-8.4073 
(0.2712) 

-6.8646 
(1.4437) 

 መଵ,௞ߚ
(Average AADT) 

0.9015 
(0.0234) 

0.8387  
(0.0286) 

0.9078 
(0.1151) 

0.8344 
(0.0283) 

0.9168 
(0.1327) 

 መଶ,௞ߚ
(Median Width) 

-0.0015 
(0.0006) 

0.0013 
(0.0008) 

-0.0191 
(0.0067) 

- 
-0.0184 
(0.0065) 

 መଷ,௞ߚ
(Right-Shoulder 

Width) 

-0.0455 
(0.0094) 

0.0014 
(0.0113) 

-0.1509 
(0.0412) 

- 
-0.1643 
(0.0447) 

߶෠௞ 
(Dispersion 
parameter) 

3.225 
(0.222) 

6.7945 
(1.143) 

2.149  
(0.803) 

6.448 
(1.006) 

1.893 
(0.789) 

 ෝ௞ݓ
(Component 
proportion) 

- 
0.857 

(0.040) 
0.143 

(0.040) 
0.880 

(0.033) 
0.120 

(0.033) 

Model Comparison Criteria 

-2LLa 9432.7 9300.7 9304.8 
AICb 9442.7 9322.7 9322.8 

Log(MLc) -4752.2 -4708.3 -4691.7 
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(Miaou et al., 2005), we limited the range of the median width to 120ft as the maximum width 
when deriving the CMFunctions for median width.  
 
Table 3. Summary statistics of variables and their base condition values 

Variable Min. Max. Average 
Standard 
Deviation 

Base 
Condition 

Median width (feet) 1 240 47.07 29.41 30 

Right-shoulder width (feet) 0 19 7.68 1.98 8 

 
The resultant CMFunctions for median width and right-shoulder width are presented in Figure 2, 
respectively. While the CMFunctions of the NB model are approximately straight lines for both 
variables, those of the CFMNB-2 model take on a more marked curve-shape. The difference in the 
shape mainly results from the fact that the NB model takes the average effect of a covariate across 
all sites, whereas the CFMNB-2 model takes into account the differential responsiveness of crash 
frequency to the covariate. As already noticed in the parameter estimation results in Section 3, the 
observations assigned to Component 1 (smaller-mean component) were not influenced by the 
median width and the right-shoulder width, whereas the observations in Component 2 (higher-
mean component) were significantly affected by these variables. This effect is reflected in the 
shape of CMFunction derived from the CFMNB-2 model.  
 

(a) CMFunctions for median width                (b) CMFunctions for right shoulder width 

            
Figure 2. CMFunction comparisons between NB and CFMNB-2 models 

 
Another good property about the shape of CMFunction in the CFMNB-2 model is that the safety 
effect of a covariate eventually levels off as the covariate increases significantly from the base 
condition. For example, it can be seen from Figure 2(a) that the safety effect of median width 
stabilizes after around 110ft. The same tendency is noticed for right-shoulder width after around 
16ft. These trends are not observable in the NB model. This is partly supported by a few researchers 
who have noted that design elements, such as shoulder or lane width could follow a U-shaped 
relationship with safety (Hauer, 2000; Xie et al., 2007; Li et al., 2008). In a U-shaped relationship, 
narrow and wide widths experience more crashes. McLean (1996) explained the U-shaped 
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relationship between safety and shoulder width by suggesting that very wide shoulders can often 
be used as an additional lane, which may lead to an increase in accident rates (Hauer, 2000). 
 

(a) CMFunctions for median width                  (b) CMFunctions for right shoulder width 

           
Figure 3. CMFunction comparisons between NB and FMNB-2 models 

 
The CMF curves from the CFMNB-2 model did not exhibit a complete U-shaped relationship 
within the sample boundaries, but when the coefficients from the FMNB-2 model (see Table 2) 
were used, the CMFunction for median width revealed a U-shaped relationship, as shown in Figure 
3(a). After a median width larger than around 100ft an increase in crashes can be observed. 
However, note that there are very few observations beyond median width of 100ft. Although this 
relationship can be still debatable, the bottom line is that the CMFunctions derived from the 
FMNB-2 model is more flexible and leave much more possibilities about the true effect of a design 
element on crash occurrence. On the other hand, the CMF curve for right-shoulder width from the 
FMNB-2 model (Figure 3(b)) did not exhibit a U-shaped curve and remained almost unchanged 
from the CFMNB-2 model. This is because the absolute of the coefficient of the right-shoulder 
width in Component 2 was much larger than that in Component 1 (i.e., -0.1509 vs. 0.0014). This 
small value in Component 1, even with a large weight, exercised little influence on the calculation 
of the CMF curve within the sample boundaries. Theoretically, if the maximum right shoulder 
width was increased to a very large value, the U-shape relationship may be observable. 
 
4.2.Combined CMF of multiple treatments 
The combined CMFs can be calculated based on Equations (3) and (9). With the dataset in this 
paper, the combined CMFs for the two covariates (i.e., median width and right shoulder width) 
were derived from the models. Under the NB model, the combined CMF equal to the multiplicative 
of the two single ones, since their effects are assumed to be independent. While under CFMNB-2 
and FMNB-2 models, the combined CMFunction is a function of the two covariates. The combined 
CMFunctions are illustrated in Figure 4 in 3-D relationship. The combined CMFs with standard 
error values for some typical combinations of median and right shoulder widths are presented in 
Table 4 for explicit comparison. It can be seen that the CMFunction under NB model is a plane 
over the range of the two covariates (in logarithm form). No matter what the value of one covariate 
is, one unit change in the other covariate brings the same amount of change in the combined CMF. 
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However, the combined CMFunctions under both CFMNB-2 and FMNB-2 models are curvature 
surfaces. When the two covariates are large (i.e., both median and right shoulder widths are wide), 
the surface is relatively flat. Conversely, when they are small (i.e., narrow median and right 
shoulder widths), the surface becomes steep. That is to say, when both median and right shoulder 
widths are narrow, widening one or both of them by some units is more effective than that when 
both are wide. For example, when the median width is 25ft, widening the right shoulder width 
from 0 to 4ft could reduce the expected crashes by 22.7% (1-1.19/1.54) with CFMNB-2 model, or 
21.9% (1-1.21/1.55) with FMNB-2 model. When the median width is 100ft, doing so could only 
reduce 8.0% (1-0.92/1.00) and 7.7% (1-0.96/1.04) of expected crashes, respectively, with the two 
models. This is consistent with the practical engineering experience. In other words, the two 
covariates are not independent in affecting crash occurrences. Thus the independence assumption 
with the NB model is invalid. 
 
In Table 4, numbers in parenthesis indicate the standard error value of each combined CMF. Most 
of the combined CMFs are statistically significant from 1.0 at a 90% level, except for some ranges 
where the estimated CMFs are approximately 1.0. However, the standard error of CMFs derived 
from CFMNB-2 and FMNB-2 models are always higher than that derived with NB model. One 
possible reason is the former two CMFs are generally greater than the latter. Another possible 
reason is that in CFMNB-2 and FMNB-2 models CMFunctions were developed with nine or seven 
parameters, respectively, which introduced more uncertainty into the resultant CMFs. By 
comparison, NB models used two parameters for estimating the combined CMFs. 
 
Another finding worth mentioning is the differences with the combined CMFs between the two 
mixture models when both covariates are relatively large. The combined CMF derived from the 
CFMNB-2 model decreases continuously as they become wider. On the other hand, the combined 
CMF produced from the FMNB-2 model only increases slightly after further widening the median 
and right shoulder width. In the figures, the former combined CMF plateaus around 0.83, while 
the latter combined CMF caps at 0.91. This might be caused by the “U-shape” effect of the median 
width captured within FMNB-2 model, as discussed in the previous section. This needs further 
analysis in order to investigate the true effects of wide pavements. Nevertheless, both models 
generally provide a more reasonable combined CMF than the multiplication of two independent 
CMFs produced from the traditional NB model. 
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(a) CFMNB-2 Model 

 
(b) FMNB-2 Model 

 
Figure 4. Combined CMF comparisons between NB, CFMNB-2 and FMNB-2 models 
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Table 4. Combined CMF for typical median and right shoulder widths 

Model 
RSW 
(ft) 

MW (ft) 
1 25 50 75 100 120 

NB 

0 
1.50 

(0.111) 
1.45 

(0.109) 
1.40 

(0.111) 
1.35 

(0.117) 
1.30 

(0.125) 
1.26 

(0.132) 

4 
1.25 

(0.048) 
1.21 

(0.045) 
1.16 

(0.050) 
1.12 

(0.059) 
1.08 

(0.070) 
1.05 

(0.079) 

8 
1.04 

(0.019) 
1.01 

(0.003) 
0.97 

(0.012) 
0.93 

(0.027) 
0.90 

(0.041) 
0.87 

(0.051) 

12 
0.87 

(0.040) 
0.84 

(0.032) 
0.81 

(0.030) 
0.78 

(0.033) 
0.75 

(0.039) 
0.73 

(0.045) 

16 
0.73 

(0.059) 
0.70 

(0.054) 
0.67 

(0.050) 
0.65 

(0.049) 
0.63 

(0.050) 
0.61 

(0.051) 

CFMN
B-2 

0 
1.93 

(0.377) 
1.54 

(0.241) 
1.27 

(0.183) 
1.11 

(0.145) 
1.00 

(0.112) 
0.95 

(0.090) 

4 
1.40 

(0.121) 
1.19 

(0.064) 
1.06 

(0.058) 
0.97 

(0.053) 
0.92 

(0.046) 
0.89 

(0.040) 

8 
1.12 

(0.052) 
1.02 

(0.006) 
0.95 

(0.015) 
0.90 

(0.024) 
0.87 

(0.027) 
0.86 

(0.030) 

12 
0.98 

(0.044) 
0.92 

(0.023) 
0.89 

(0.022) 
0.87 

(0.027) 
0.85 

(0.031) 
0.84 

(0.033) 

16 
0.91 

(0.041) 
0.88 

(0.031) 
0.86 

(0.031) 
0.85 

(0.033) 
0.84 

(0.036) 
0.83 

(0.037) 

FMNB-
2 

0 
1.98 

(0.372) 
1.55 

(0.233) 
1.28 

(0.166) 
1.13 

(0.130) 
1.04 

(0.113) 
1.00 

(0.109) 

4 
1.43 

(0.123) 
1.21 

(0.068) 
1.07 

(0.057) 
0.99 

(0.058) 
0.96 

(0.064) 
0.95 

(0.072) 

8 
1.13 

(0.050) 
1.02 

(0.006) 
0.95 

(0.016) 
0.93 

(0.030) 
0.92 

(0.043) 
0.92 

(0.054) 

12 
0.96 

(0.052) 
0.91 

(0.038) 
0.89 

(0.038) 
0.89 

(0.043) 
0.90 

(0.052) 
0.91 

(0.061) 

16 
0.88 

(0.075) 
0.86 

(0.071) 
0.86 

(0.072) 
0.87 

(0.075) 
0.89 

(0.080) 
0.91 

(0.087) 
NOTE: Values in parenthesis indicate the standard error of each combined CMF. Numbers with underline indicate 
significantly different from 1.0 at a 90% level. 
 
Park and Abdel-Aty (2015a) proposed using adjustment factor (AF) to capture the dependence of 
simultaneously implemented treatments. An adjustment factor is defined as the ratio between the 
combined CMF to the multiplicative of single ones. An AF greater than 1.0 means the combined 
safety effect is smaller than the “sum” of individuals, and vice versa. If an AF equals to 1.0, the 
multiple treatments are independent of each other. Using the same concept, the adjustment 
functions were derived from the CFMNB-2 and FMNB-2 models (for the detailed description 
about deriving AFs, please refer to Appendix B.) Their surfaces are shown in Figure 5. It can be 
seen that the adjustment function surfaces are similar under the two finite mixture models. Over 
some areas, the AF is greater than 1.0, and over others it is smaller than 1.0. The AF is about 1.0 
around the base condition (i.e., 30ft for median width and 8ft for right shoulder width). It is greater 
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than 1.0 when both covariates are narrow or wide, and the value increases as they become narrower 
or wider. Over the area where one of the two is narrow and the other is wide, the AF is smaller 
than 1.0. The further the covariate combination is away from the base condition, the more bias the 
HSM method brings. Some specific AF values as well as standard error for typical median and 
right shoulder width combinations are shown in Table 5. All of the AFs are significantly different 
from 1.0 at a 95% level. Based on this result, the HSM method might over-estimate the combined 
CMFs under particular conditions and under-estimate them under some other conditions. This 
result basically agrees with the previous study conducted by Park and Abdel-Aty (2015a), in which 
they also reported that the HSM method produces biased or erroneous CMFs for combined 
treatments.  
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(a) CFMNB-2 Model 

 
(b) FMNB-2 Model  

 
Figure 5. Adjustment factors derived from CFMNB-2 and FMNB-2 models 
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Table 5. Adjustment factor derived from CFMNB-2 and FMNB-2 models 

Model 
RSW 
(ft) 

MW (ft)
1 25 50 75 100 120 

CFMNB-
2 

0 
1.26 

(0.127) 
1.11 

(0.048) 
0.99 

(0.004) 
0.91 

(0.034) 
0.85 

(0.052) 
0.82 

(0.062) 

4 
1.10 

(0.046) 
1.04 

(0.018) 
0.99 

(0.001) 
0.96 

(0.012) 
0.94 

(0.019) 
0.93 

(0.023) 

8 
1.00 

(0.002) 
1.00 

(0.000) 
1.00 

(0.001) 
1.00 

(0.001) 
1.01 

(0.002) 
1.01 

(0.002) 

12 
0.93 

(0.026) 
0.97 

(0.009) 
1.01 

(0.002) 
1.03 

(0.008) 
1.05 

(0.011) 
1.06 

(0.014) 

16 
0.89 

(0.037) 
0.96 

(0.013) 
1.01 

(0.002) 
1.05 

(0.010) 
1.08 

(0.015) 
1.09 

(0.019) 

FMNB-2 

0 
1.28 

(0.114) 
1.12 

(0.046) 
0.99 

(0.004) 
0.90 

(0.036) 
0.84 

(0.057) 
0.80 

(0.069) 

4 
1.12 

(0.044) 
1.05 

(0.018) 
1.00 

(0.001) 
0.96 

(0.014) 
0.93 

(0.022) 
0.92 

(0.027) 

8 
0.99 

(0.002) 
1.00 

(0.000) 
1.00 

(0.001) 
1.01 

(0.002) 
1.01 

(0.002) 
1.01 

(0.003) 

12 
0.91 

(0.025) 
0.96 

(0.010) 
1.01 

(0.002) 
1.04 

(0.010) 
1.06 

(0.016) 
1.07 

(0.019) 

16 
0.86 

(0.036) 
0.94 

(0.014) 
1.01 

(0.002) 
1.06 

(0.014) 
1.09 

(0.022) 
1.10 

(0.028) 
NOTE: Values in parenthesis indicate the standard error of the adjustment factors. All of the adjustment factors are 
significantly different from 1.0 at a 95% level. 
 
5. SUMMARY AND CONCLUSION 
Recently, applications of a finite mixture regression model have gained an interest from researchers 
because of its considerable potential for addressing the unobserved heterogeneity in highway 
vehicle crash data. Given the superior performance of the finite mixture model, there is a need to 
investigate whether this type of model would result in important differences in various highway 
safety analyses as compared to traditional models. In this respect, this study aimed to investigate 
the relative performance of the two models (i.e., FMNB-2 model vs. NB model) in terms of 
developing CMFs. The procedure on how to derive the CMFunctions for both single and multiple 
covariates from the FMNB-2 model was descried in details and its characteristics were discussed 
by comparing it with that from the traditional NB model. 
 
The CMFunction for the FMNB-2 model was not as simple as the one derived from the NB model 
since the conditional mean is a mixture of additive and multiplicative terms. However, the 
CMFunction derived from the FMNB-2 model showed advantages over that from the NB model 
since it considers the interactions between parameters and covariates, and hence can better account 
for the differential responsiveness of crash frequency with respect to a specific covariate. Based 
on the modeling results in Park et al. (2014), the CMF curves for the median width and right-
shoulder width were derived for the constrained FMNB-2 model (i.e., CFMNB-2 model) and they 
were compared with those from the NB model. The CMF curve shapes produced by the CFMNB-
2 model had a better property in that the safety effect of a covariate eventually leveled off as the 
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values of the covariate increase significantly from its base condition value. On the other hand, 
when the regular FMNB-2 model – which is inferior to the CFMNB-2 model, but superior to the 
NB model – was used, the CMF curve for median width showed a U-shaped relationship. Further, 
the combined CMFs of the two covariates were estimated and compared with those estimated using 
the HSM method (i.e., multiplicative of single CMFs developed using the same models). The 
comparison indicates the two were not independent. Widening the median or right shoulder on 
narrow highways (recall that the lane width in the dataset is fixed) are more effective than that for 
wide ones. This result was supported by several previous research studies. The AFs were then 
estimated, showing that the HSM method could over- or under-estimate the combined CMFs under 
particular combination of covariates. The further the combination is away from the base condition, 
the higher the bias HSM method tends to induce.  
 
Various CMFs for single treatments are available in the current literature (e.g., HSM, CMF 
Clearinghouse). Most of them were assumed to have linear effects or relationships on safety and 
to be independently affecting crash risk. Recent studies have indicated the linear and independent 
assumptions may not always be true. Methods for revealing nonlinear relationships have been 
proposed, and efforts are being made to evaluate the combined safety effects of multiple treatments 
(Lao et al. 2014; Park and Abdel-Aty 2015a). However, very limited approaches have showed the 
ability to adequately capture nonlinear effect and interaction impacts between variables 
simultaneously (e.g., multivariate adaptive regression splines (MARS) model proposed by Park 
and Abdel-Aty (2015b)). This paper shows that the FMNB-2 models are able to capture the 
nonlinear effects of single treatments as well as the “non-independent” combined effects of 
multiple treatments. Another option is provided to safety analysts for developing nonlinear and 
combined CMFs. To find the true safety effects of design elements and to develop accurate CMFs, 
it is suggested in the future that the FMNB-2 models be compared with others (e.g., MARS) to 
assess if the CMFs can be reproduced consistently. Finally, it is worth mentioning that this study 
used the same concept as that of traditional NB models to estimate combined CMFs. No interaction 
terms (e.g., median width × right shoulder width) were included in the models. The difference 
between combined CMFs and the multiplicative of single ones may partially come from 
nonlinearity of single CMFs. This also needs further analysis. 
 
 
APPENDIX A - ANALYTICAL ANALYSIS OF COMBINED SAFETY EFFECTS 
 
Based on NB Models 
To simplify the analysis, we only considered two covariates, denoted as x1 and x2, and the expected 
crash mean µ equals 
 
ߤ ൌ ே஻ܥ ൈ exp	ሺߚଵ ൈ ଵݔ ൅ ଶߚ ൈ  ଶሻ  (A.1)ݔ
 
Where, 

 ,ଶ = coefficients for x1 and x2, respectively; andߚ ,ଵߚ
 .ே஻ = a constant (i.e., scale factor) which does not depend on x1 or x2ܥ

 
The CMFunctions for x1 and x2 are shown in Equations A.2 and A.3, respectively. 
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௫ଵܨܯܥ
ே஻ ൌ ஼ಿಳൈୣ୶୮	ሺఉభൈ௫భାఉమൈ௫మሻ	

஼ಿಳൈୣ୶୮	ሺఉభൈ௫భ
್ೌೞ೐ାఉమൈ௫మሻ	

ൌ ே஻,ଵܥ ൈ exp	ሺߚଵ ൈ  ଵሻ  (A.2)ݔ

௫ଶܨܯܥ
ே஻ ൌ ஼ಿಳൈୣ୶୮	ሺఉభൈ௫భାఉమൈ௫మሻ	

஼ಿಳൈୣ୶୮	ሺఉభൈ௫భାఉమൈ௫మ
್ೌೞ೐ሻ	

ൌ ே஻,ଶܥ ൈ exp	ሺߚଶ ൈ  ଶሻ  (A.3)ݔ

 
Where, 

௫ଵܨܯܥ
ே஻ = specific (single) CMF for x1; 

௫ଶܨܯܥ
ே஻ = specific (single) CMF for x2; 

ଵݔ
௕௔௦௘ = base condition for x1; 
ଶݔ
௕௔௦௘ = base condition for x2; and,  
 .ே஻,ଶ = two constants, neither depends on x1 or x2ܥ ே஻,ଵ andܥ

 
And the combined CMF for x1 and x2 is shown in Equation A.4. 
 

஼௢௠௕,௫ଵ,௫ଶܨܯܥ
ே஻ ൌ

ே஻ܥ ൈ exp	ሺߚଵ ൈ ଵݔ ൅ ଶߚ ൈ 	ଶሻݔ

ே஻ܥ ൈ exp	ሺߚଵ ൈ ଵݔ
௕௔௦௘ ൅ ଶߚ ൈ ଶݔ

௕௔௦௘ሻ	
 

ൌ ே஻,஼௢௠௕ܥ ൈ exp	ሺߚଵ ൈ ଵሻݔ ൈ exp	ሺߚଶ ൈ  ଶሻ (A.4)ݔ
 

Where, 
஼௢௠௕,௫ଵ,௫ଶܨܯܥ

ே஻  = combined CMF for x1 and x2; and, 
 .ே஻,஼௢௠௕ = a constant that does not depend on x1 or x2ܥ
 

It is trivial to show that ܥே஻,஼௢௠௕ ൌ ே஻,ଵܥ	 	ൈ  ே஻,ଶ, and further we haveܥ
 
஼௢௠௕,௫ଵ,௫ଶܨܯܥ

ே஻ ൌ ௫ଵܨܯܥ
ே஻ ൈ ௫ଶܨܯܥ

ே஻ (A.5) 
 
Equation A.5 implies that under the NB model, the combined CMF of two variables equals to the 
multiplicative of the two single ones. This is also commonly said the safety effects of the two 
variables are independent. If we further take the logarithm of both sides of Equation A.4, it leads 
to Equations A.6 
 
log൫ܨܯܥ஼௢௠௕,௫ଵ,௫ଶ

ே஻ ൯ ൌ log൫ܥே஻,஼௢௠௕൯ ൅ ଵߚ ൈ ଵݔ ൅ ଶߚ ൈ  ଶ (A.6)ݔ
 
As can be seen, Equation A.6 does not contain any interaction term between x1 and x2 (such as, 
ଵݔ ൈ ଵݔ ,ଶ, ݁௫భା௫మݔ

௫ଶ, etc.) Take the partial derivative of Equation A.6 with respect to x1 and x2 
respectively, we have Equations A.7 and A.8. 
 
డ ୪୭୥൫஼ெி಴೚೘್,ೣభ,ೣమ

ಿಳ ൯

డ௫ଵ
ൌ  ଵ (A.7)ߚ

డ ୪୭୥൫஼ெி಴೚೘್,ೣభ,ೣమ
ಿಳ ൯

డ௫ଶ
ൌ  ଶ (A.8)ߚ

 
Equation A.7, which is partial derivative with respect to x1, is free of x2. Similarly, Equation A.8 is 
free of x1. 
 
In other words, the statement that the safety effects of two variables are independent is equivalent 
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to that the combined CMF equals to the multiplicative of two single ones. This independence also 
implies: (1) the logarithm of the combined CMF does not contain any interaction term between 
the two variables; and (2) the partial derivative of logarithm of the combined CMF with respect to 
one variable does not depend on the other one. 
 
Based on FMNB-2 Models 
To simplify the analysis, we only consider two variables, x1 and x2, which is similar with that of 
NB models. The expected crash mean µ is given as Equation A.9.  
 
ߤ ൌ ଵݓ ൈ exp൫ߚ଴,ଵ ൅ ଵ,ଵߚ ൈ ଵݔ ൅ ଶ,ଵߚ ൈ ଶ൯ݔ ൅ ଶݓ ൈ exp	ሺߚ଴,ଶ ൅ ଵ,ଶߚ ൈ ଵݔ ൅ ଶ,ଶߚ ൈ  ଶሻ  (A.9a)ݔ
 
Or equivalently, 
 
ߤ ൌ ிெே஻ିଶ,ଵܥ ൈ exp൫ߚଵ,ଵ ൈ ଵݔ ൅ ଶ,ଵߚ ൈ ଶ൯ݔ ൅ ிெே஻ିଶ,ଶܥ ൈ exp	ሺߚଵ,ଶ ൈ ଵݔ ൅ ଶ,ଶߚ ൈ  ଶሻ (A.9b)ݔ
 
Where, 

 ;ଶ = the weight factors of the two components, respectivelyݓ ,ଵݓ
 ଴,ଶ areߚ ଴,ଵ andߚ ;௝,௞ = coefficient for variable j in component k, j = 1 or 2, k = 1 or 2ߚ

intercepts in the two components, respectively; and, 
 .ிெே஻ିଶ,ଶ = two constants that do not depend on x1 or x2ܥ ிெே஻ିଶ,ଵ andܥ
 

As has been documented in the manuscript (Section 2.2), the (single) CMF for x1 and x2 are 
produced below as Equations A.10 and A.11. 
 

௫ଵ	ܨܯܥ
ிெே஻ିଶ ൌ

ଵݓ ൈ exp൫ߚଵ,ଵ ൈ ଵݔ ൅ ଶ,ଵߚ ൈ ଶതതത൯ݔ ൅ ଶݓ ൈ exp	ሺߚଵ,ଶ ൈ ଵݔ ൅ ଶ,ଶߚ ൈ 	ଶതതതሻݔ

ଵݓ ൈ exp൫ߚଵ,ଵ ൈ ଵݔ
௕௔௦௘ ൅ ଶ,ଵߚ ൈ ଶതതത൯ݔ ൅ ଶݓ ൈ exp	ሺߚଵ,ଶ ൈ ଵݔ

௕௔௦௘ ൅ ଶ,ଶߚ ൈ 		ଶതതതሻݔ
 

ிெே஻ିଶ,௫ଵ,ଵܥ= ൈ exp൫ߚଵ,ଵ ൈ ଵ൯ݔ ൅ ிெே஻ିଶ,௫ଵ,ଶܥ ൈ exp൫ߚଵ,ଶ ൈ  ଵ൯ (A.10)ݔ
 
௫ଶ	ܨܯܥ

ிெே஻ିଶ ൌ ிெே஻ିଶ,௫ଶ,ଵܥ ൈ exp൫ߚଶ,ଵ ൈ ଶ൯ݔ ൅ ிெே஻ିଶ,௫ଶ,ଶܥ ൈ exp൫ߚଶ,ଶ ൈ  ଶ൯ (A.11)ݔ
 
Where, 

 ,ிெே஻ିଶ,௫ଵ,ଶ = two constants that do not depend on x1; andܥ ிெே஻ିଶ,௫ଵ,ଵ andܥ
 .ிெே஻ିଶ,௫ଶ,ଶ = two constants that do not depend on x2ܥ ிெே஻ିଶ,௫ଶ,ଵ andܥ

 
And the combined CMF for x1 and x2 can be derived as Equation A.12. 
 

஼௢௠௕.௫ଵ,௫ଶ	ܨܯܥ
ிெே஻ିଶ ൌ

ଵݓ ൈ exp൫ߚଵ,ଵݔଵ ൅ ଶ൯ݔଶ,ଵߚ ൅ ଶݓ ൈ exp	ሺߚଵ,ଶݔଵ ൅ 	ଶሻݔଶ,ଶߚ

ଵݓ ൈ exp൫ߚଵ,ଵݔଵ
௕௔௦௘ ൅ ଶݔଶ,ଵߚ

௕௔௦௘൯ ൅ ଶݓ ൈ exp	ሺߚଵ,ଶݔଵ
௕௔௦௘ ൅ ଶݔଶ,ଶߚ

௕௔௦௘ሻ		
 

௖௢௠௕,ଵܥ= ൈ exp൫ߚଵ,ଵݔଵ ൅ ଶ൯ݔଶ,ଵߚ ൅ ௖௢௠௕,ଶܥ ൈ exp൫ߚଵ,ଶݔଵ ൅  ଶ൯ (A.12)ݔଶ,ଶߚ
 
Where, 

 .௖௢௠௕,ଶ = two constants that do not depend on x1 or x2ܥ ௖௢௠௕,ଵ andܥ
 
Notice that ܨܯܥ	஼௢௠௕.௫ଵ,௫ଶ

ிெே஻ିଶ ൌ ௫ଵ	ܨܯܥ
ிெே஻ିଶ ൈ ௫ଶ	ܨܯܥ

ிெே஻ିଶ does not hold (unless the coefficients 
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in the two components are identical, which becomes an NB model). For example, the right hand 
side contains two terms of exp൫ߚଵ,ଶݔଵ ൅ ଵݔଵ,ଵߚଶ൯  and exp൫ݔଶ,ଶߚ ൅  ଶ൯ , which are notݔଶ,ଶߚ
included in the left hand side (i.e., Equation A.11).  
 
The logarithm of ܨܯܥ	஼௢௠௕.௫ଵ,௫ଶ

ிெே஻ିଶ  is shown in Equation A.13. 
 
log൫ܨܯܥ	஼௢௠௕.௫ଵ,௫ଶ

ிெே஻ିଶ ൯ ൌ log	ሾܥ௖௢௠௕,ଵ exp൫ߚଵ,ଵݔଵ ൅ ଶ൯ݔଶ,ଵߚ ൅ ௖௢௠௕,ଶܥ exp൫ߚଵ,ଶݔଵ ൅ ଶ൯ሿݔଶ,ଶߚ
 (A.13) 
 
It is not simple to show the partial derivative of log൫ܨܯܥ	஼௢௠௕.௫ଵ,௫ଶ

ிெே஻ିଶ ൯ with respect to x1 or x2, but 
obviously neither is free of x2 or x1.  
 
It can be concluded that, under FMNB-2 models, the safety effects of multiple treatments are not 
independent, although in each of the two components the variables had been assumed to be 
independent. 
 
APPENDIX B - DERIVATIVE OF ADJUSTMENT FACTORS 
 
Based on NB Models 
As defined in the previous literature (e.g., Park and Abdel-Aty, 2015a), an Adjustment Factor (AF) 
can be estimated as dividing the combined CMF by the multiplicative of single ones. Using the 
results of Appendix A, the AF based on an NB model is shown in Equation B.1. 
 

ே஻ܨܣ ൌ
஼ெி಴೚೘್,ೣభ,ೣమ

ಿಳ 	

஼ெிೣ భ
ಿಳൈ஼ெிೣ మ

ಿಳ	
 (B.1) 

 
By inserting Equation A.5 into B.1, it can be seen that ܨܣே஻ ൌ 1.0  for all x1 and x2. This is 
equivalent to the fact that the safety effects of the two variables are independent. 
 
Based on FMNB-2 Models 
Using the results of Appendix A, the AF based on an FMNB-2 model is shown in Equation B.2. 
 

ிெே஻ିଶܨܣ ൌ
஼ெி	಴೚೘್.ೣభ,ೣమ

ಷಾಿಳషమ 	

஼ெி	ೣభ
ಷಾಿಳషమൈ஼ெி	ೣమ

ಷಾಿಳషమ	
 (B.2) 

 
Inserting Equations A.10 to A.12 into B.1, ܨܣிெே஻ିଶ becomes: 
 

ிெே஻ିଶܨܣ ൌ
஼భൈୣ୶୮൫ఉభ,భ௫భାఉమ,భ௫మ൯ା஼మൈୣ୶୮൫ఉభ,మ௫భାఉమ,మ௫మ൯	

ൣ஼య ୣ୶୮൫ఉభ,భ௫భ൯ା஼ర ୣ୶୮൫ఉభ,మ௫భ൯൧ൈሾ஼ఱ ୣ୶୮൫ఉమ,భ௫మ൯ା஼ల ୣ୶୮൫ఉమ,మ௫మ൯ሿ	
 (B.3) 

 
Where, C1, C2, C3, …, C6, are constants, none of them depend on x1 or x2. Although it is not easy 
to simplify the expression of ܨܣிெே஻ିଶ, it is clearly a function of both x1 and x2. That is to say, the 
AF estimated using FMNB-2 models is not a constant, and it varies depending on specific 
conditions (i.e., different x1’s and/or x2’s). 
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