A Semiparametric Negative Binomial Generalized Linear Model for Modeling Over-Dispersed Count Data with a Heavy Tail: Characteristics and Applications to Crash Data

Mohammadali Shirazi
Zachry Department of Civil Engineering
Texas A&M University, College Station, TX 77843, United States
Email: alishirazi@tamu.edu

Dominique Lord*, Ph.D.
Professor, Zachry Department of Civil Engineering
Texas A&M University, College Station, TX 77843, United States
Tel. (979) 458-3949
Email: d-lord@tamu.edu

Soma Sekhar Dhavala, Ph.D.
Chief Data Scientist, Perceptron Learning Solutions Pvt Ltd.
Email: soma.dhavala@gmail.com

Srinivas Reddy Geedipally, Ph.D.
Assistant Research Engineer
Texas A&M Transportation Institute
Tel. (817) 462-0519
Email: srinivas-g@tti.tamu.edu

February 21, 2016

*corresponding Author
Abstract

Crash data can often be characterized by over-dispersion, heavy (long) tail and many observations with the value zero. Over the last few years, a small number of researchers have started developing and applying novel and innovative multi-parameter models to analyze such data. These multi-parameter models have been proposed for overcoming the limitations of the traditional negative binomial (NB) model, which cannot handle this kind of data efficiently. The research documented in this paper continues the work related to multi-parameter models. The objective of this paper is to document the development and application of a flexible NB generalized linear model with randomly distributed mixed effects characterized by the Dirichlet process (NB-DP) to model crash data. The objective of the study was accomplished using two datasets. The new model was compared to the NB and the recently introduced model based on the mixture of the NB and Lindley (NB-L) distributions. Overall, the research study shows that the NB-DP model offers a better performance than the NB model once data are over-dispersed and have a heavy tail. The NB-DP performed better than the NB-L when the dataset has a heavy tail, but a smaller percentage of zeros. However, both models performed similarly when the dataset contained a large amount of zeros. In addition to a greater flexibility, the NB-DP provides a clustering by-product that allows the safety analyst to better understand the characteristics of the data, such as the identification of outliers and sources of dispersion.

Keywords: Negative Binomial, Dirichlet process, Generalized linear model, Crash data

1. Introduction

Regression models have different applications in highway safety. They can be used for predicting the number of crashes, evaluating roadway safety, screening variables and identifying hazardous sites. As documented in Lord and Manering (2010) and more recently in Manering and Bhat (2014), extensive research studies have been devoted to develop innovative and novel statistical models to estimate or predict the number of crashes and evaluate roadway safety. These statistical models specifically deal with unique characteristics that are associated with crash data. As such, crash data can often be characterized with over-dispersion, heavy tail and many observations with the value zero. These unique characteristics inspired a few researchers to propose several new models that aimed at overcoming the limitations associated with the most
commonly used model in highway safety literature, the negative binomial (NB) model (also known as the Poisson-gamma model).

Recent research has shown that the NB model can be significantly affected by datasets characterized by a heavy tail (Zou et al., 2015). According to Guo and Trivedi (2002), the NB regression model cannot properly capture the heavy tail because a negligible probability is assigned to large counts. Heavy tails can be caused by the data generating process itself (i.e., including observations with very large counts), or they can also be attributed to datasets that have excess zeros. In the latter case, the heavy tails are created by shifting the overall sample mean closer to zero, which increases the spread of the observations (Lord and Geedipally, 2016). Over the last two or three years, a new series of multi-parameter models (i.e., models with several shape/scale parameters) that mixes the NB distribution with other distributions have been developed for analyzing such datasets. The NB-Lindley (NB-L) model (Geedipally et al., 2012) and the NB-generalized exponential (NB-GE) (Vangala et al., 2015) are examples of such types of models. This paper continues describing research in this line of modeling work.

A recurring theme in many multi-parameter models is to consider a mixing distribution at the heart of the generative model. For example, one can see the NB as a Poisson-Gamma mixture or the NB-L as a mixture of the NB and the Lindley distributions (note: the Lindley distribution itself is a mixture of two Gamma distributions). There are primarily three major ingredients to eliciting such mixtures, which offer a greater degree of flexibility in model construction:

1. The mixing weights: the mixing weights determine the relative weight of the individual mixing components.
2. The shape and characteristics of the mixing components or the constituent members of the mixtures, and
3. The level: in the context of hierarchical/multi-level modeling, at which level the mixture distribution is elicited.

A transportation safety analyst might have a preference to choose or rather not to choose a particular mixture. In all cases, the analyst is required to make certain assertions about the mixture components. One way to retain the modeling flexibility and yet not be overly concerned about the assertions is to express the uncertainty explicitly by considering a random mixing
distribution. The Dirichlet process (DP), a widely used prior in Bayesian nonparametric literature, allows such representation (Antoniak, 1974; Escobar and West, 1995). One way to think about the DP is as an infinite mixture distribution, where the number of unique components and the component characteristics themselves can be learned from the data.

There has been a phenomenal growth in theory, inference and applications concerning the DP and its related processes in the last decade; recent monographs on Bayesian nonparametric devoting significant portion on the DP and related processes is a testimony to that effect (Hjort et al., 2010; Mitra and Muller, 2015). On the application side, the DP has been applied in numerous fields ranging from network modeling (Ghosh et al., 2010) to Bioinformatics (Dhavala et al., 2010; Argiento et al., 2015) to Psychometrics (Miyazaki and Hoshino, 2009) to name a few. In particular, the application of the DP to account for over-dispersion in count data has been considered in Mukhopadhyay and Gelfand (1997) and Carota and Parmigiani (2002), with Binomial and Poisson based likelihoods. More details about the DP, its structure and computational details are discussed in Sections 2 and 6.

The objective of this study is to develop and document a new method to model over-dispersed data with a heavy tail. The model is introduced based on the Bayesian hierarchical modeling framework as a mixture of the NB distribution and a random distribution characterized by the DP. The proposed model can be motivated, first, by looking at the NB model as a mixture of the Poisson and Gamma distributions. As an extension of the Poisson model, the Poisson-gamma was developed assuming that the Poisson parameter is measured with a random error; this random error itself is gamma distributed. The Poisson-gamma mixture is thought to be a better alternative to accommodate possible over-dispersion in data (Hilbe, 2011). Second, it can be motivated by looking at the NB-L model as a mixture of the negative binomial and the Lindley distributions. The NB-L model can overcome the NB limitations when data are over-dispersed and have many zeros. Essentially, as discussed above, although mixture models are providing better alternatives, they assume the shape and density of the distributions to be fixed. However, we can obtain even more flexibility by assuming that the mixing distribution itself is random. Given this motivation in mind, the current research plans to develop a model as a mixture of the negative binomial and a random distribution characterized by the DP.
In addition to providing greater flexibility, the proposed model groups crash data into a finite number of clusters as one of its by-products. The clustering property of the mixture model can lend insights to learn more about the domain or the data. This can be used to 1) identify outliers; 2) study the sites that fall into the same clusters to identify the safety issues and get insights to implement appropriate countermeasures; and 3) examine sources of dispersions (Peng et al., 2014).

2. Characteristics of the Dirichlet Process (DP)

Traditionally, the Bayesian parametric inference mechanism considers a parametric distribution $F_0(\cdot|\theta)$, where θ is a finite vector of parameters, as a prior for the unknown parameter. However, constraining the model within specific parametric families could limit the scope of the inference. To overcome this difficulty, in context of the Bayesian nonparametric (or semiparametric) modeling, a random prior distribution is considered for the parameter as opposed to choosing a prior distribution from a known parametric family. The prior is placed over infinite-dimension space of distribution functions. In that sense, it gives more flexibility to the parameter inference mechanism by providing a wide range of prior distributions.

The DP (Ferguson, 1973; Ferguson, 1974) is a stochastic process that is usually used as a prior in Bayesian nonparametric (or semiparametric) modeling. Escobar and West (1998) define the DP as a random probability measure over the space of all probability measures. In that sense, the DP is considered as a distribution over all possible distributions; that is, each draw from the DP is itself a distribution. Below, we provide a formal definition and characterization of the DP. For a gentle introduction and motivation to DP as an extension of the finite dimensional mixtures to infinite dimensional, the interested readers are referred to Teh (2010) and Gelman et al. (2014).

Let A_1, A_2, \ldots, A_r be any finite measurable partitions of the parameter space (Θ). Let us assume τ be a positive real number and $F_0(\cdot|\theta)$ be a continuous distribution over Θ. Then, $F(\cdot) \sim DP(\tau, F_0(\cdot|\theta))$ if and only if (Escobar and West, 1998):

$$
(F(A_1), F(A_2), \ldots, F(A_r)) \sim Dirichlet(\tau F_0(A_1|\theta), \tau F_0(A_2|\theta), \ldots, \tau F_0(A_r|\theta))
$$

(1)
where τ is defined as the precision (or concentration) parameter and $F_0(\cdot | \theta)$ as the base (or baseline) distribution. Note that based on the Dirichlet distribution properties, for each partition $A \subset \Theta$, we have:

$$E(F(A)) = F_0(A|\theta)$$
$$\text{var}(F(A)) = \frac{F_0(A|\theta)(1 - F_0(A|\theta))}{1 + \tau}$$

Therefore, the base distribution $F_0(\cdot | \theta)$ and the precision parameter τ play significant roles in the DP definition. The expectation of the random distribution $F(\cdot)$ is the base distribution $F_0(\cdot | \theta)$. Likewise, the precision parameter τ controls the variance of the random distribution around its mean. In other words, τ measures the variability of the target distribution around the base distribution. As $\tau \to \infty$, we would have $F(\cdot) \to F_0(\cdot | \theta)$ while, on the other hand, as $\tau \to 0$, the random distribution $F(\cdot)$ would deviate further away from $F_0(\cdot | \theta)$.

Equation (1) defines the DP indirectly through the marginal probabilities assigned to finite number of partitions. Therefore, it gives no intuition on realizations of $F(\cdot) \sim DP(\tau, F_0(\cdot | \theta))$. To simulate random distributions from the DP, however, Sethuraman (1994) introduced a straightforward stick-breaking constructive representation of this process as follows:

$$\gamma_k | \tau \sim \text{Beta}(1, \tau), \quad k = 1, 2, \ldots$$
$$\psi_k | \theta \sim F_0(\cdot | \theta), \quad k = 1, 2, \ldots$$
$$p_k = \gamma_k \prod_{k' < k} (1 - \gamma_{k'}), \quad k = 1, 2, \ldots$$
$$F(\cdot) \sim DP(\tau, F_0(\cdot | \theta)) \equiv \sum_k p_k \delta_{\psi_k}$$

where δ_{ψ_k} indicates a degenerate distribution with all its mass at ψ_k. This construction, metaphorically, can be considered as breaking a unit length of stick iteratively (Ishwaran and James, 2001). First, the stick is broken at a random proportion γ_1; an atom is generated from the base distribution (ψ_1) and is assigned to the length of the stick that was just broken (p_1). Then, recursively, the remaining portions of the stick are broken at new proportions ($\gamma_2, \gamma_3, \ldots$); new atoms are generated from the base distribution (ψ_2, ψ_3, \ldots) and are assigned to each broken length of the remained sticks (p_2, p_3, \ldots).
Given the stick-breaking construction of the DP (Equation 2), the mean and variance of \(\nu \sim F(\cdot) \) can be calculated as follows (Yang et al., 2010):

\[
E(\nu|p,\psi) = \mu_{DP} = \sum_k p_k \psi_k \tag{3}
\]

\[
\text{var}(\nu|p,\psi) = \nu_{DP} = \sum_k p_k \psi_k^2 - \left(\sum_k p_k \psi_k \right)^2 \tag{4}
\]

As indicated in Equation (2), theoretically, the stick-breaking construction of the DP includes infinite components (so called clusters); however, practically, the model can be approximated with its truncated version (TDP) by considering an upper bound on the number of components (M) as follows (Ishwaran and James, 2001; Ishwaran and Zarepour, 2002):

\[
\gamma_k | \tau \sim \text{Beta}(1, \tau), \quad k = 1, 2, \ldots, M \tag{5-a}
\]

\[
\psi_k | \theta \sim F_0(\cdot | \theta), \quad k = 1, 2, \ldots, M \tag{5-b}
\]

\[
p_k = \gamma_k \prod_{k' < k} (1 - \gamma_{k'}), \quad k = 1, 2, \ldots, M \tag{5-c}
\]

\[
F(\cdot) \sim \text{TDP}(\tau, M, F_0(\cdot | \theta)) \equiv \sum_{k=1}^{M} p_k \delta_{\psi_k} \tag{5-d}
\]

So far, several research studies have tried to estimate the required number of components (or clusters) (M) in the truncated version of the DP (Ishwaran and James, 2001; Ohlssen et al., 2007). As a key point, first, the analyst needs to keep in mind that the number of mass points (M) in the TDP is correlated to the value of the precision parameter (\(\tau \)). Theoretically, as the value of \(\tau \) increases, the number of clusters that are shared by data points increases; hence, a larger value for the parameter M is required. Second, the model needs to be approximated to the level that it can be assumed that the effect of neglected clusters remains negligible \((1 - \sum_{k=1}^{M} p_k \approx \varepsilon)\). Given these two rationales into account, Ohlssen et al. (2007) showed that the maximum number of clusters can be approximated by Equation (6) as a function of \(\tau \) and the desired \(\varepsilon \)-accuracy as follows:

\[
M \approx 1 + \frac{\log(\varepsilon)}{\log(\frac{\tau}{1 + \tau})} \tag{6}
\]

Once the model is approximated to M clusters, \(p_M \) needs to be modified using Equation (7) to make the model identifiable (i.e.: \(\sum_{k=1}^{M} p_k = 1 \)):

\[
M \approx 1 + \frac{\log(\varepsilon)}{\log(\frac{\tau}{1 + \tau})} \tag{6}
\]
3. Characteristics of the NB-DP Generalized Linear Model

This section describes the characteristics of the semiparametric NB model that is proposed in this paper. The generalized linear model (GLM) is formulated as a mixture of the negative binomial distribution and a random distribution characterized by the DP. This model is referred to as the NB-DP in this paper. This mixed distribution gives more flexibility to the negative binomial distribution to better accommodate the data that are characterized by over-dispersion and a heavy tail.

In order to better understand the NB-DP model, first, the NB model and its characteristics are briefly described. The NB distribution can be formulated given two different schemes (Geedipally et al., 2012): 1) a mixture of the Poisson and gamma distributions, or 2) a sequence of independent Bernoulli trials. The probability mass function (pmf) of the negative binomial distribution is defined as follows:

\[
p(Y = y|\phi, p) = \frac{\Gamma(\phi + y)}{\Gamma(\phi)\Gamma(y + 1)} (p)^\phi (1 - p)^y ; 0 < p < 1, \phi > 0
\]

(8)

where \(p \) = failure probability in each trial and \(\phi \) = inverse dispersion parameter.

The long term mean response of observations of the negative binomial distribution is equal to:

\[
\mu = \frac{(1 - p)\phi}{p}
\]

(9)

Taking Equation (9) into account, the parameter \(p \) can be reparameterized as a function of the mean response of the observation (\(\mu \)) and the inverse dispersion parameter (\(\phi \)) as,

\[
p = \frac{\phi}{\mu + \phi}
\]

(10)

Given Equations (8) and (10) into account, the pmf of the NB distribution can be structured in following notation (i.e., as a Poisson-gamma model) which is the common notation that is used in the context of crash data regression modeling.
\[NB(y|\mu, \phi) \equiv p(Y = y|\phi, p) = \frac{\Gamma(\phi + y)}{\Gamma(\phi)\Gamma(y + 1)} \left(\frac{\phi}{\mu + \phi} \right)^\phi \left(1 - \frac{\phi}{\mu + \phi} \right)^y ; \quad 0 < p < 1, \phi > 0 \quad (11) \]

In context of the NB GLM regression for crash data, the long-term mean response of the NB would have a log-linear relationship with covariates as follows:

\[\ln(\mu) = \beta_0 + \sum_{j=1}^{d} \beta_j X \quad (12) \]

where \(\beta_j = j^{th} \) regression coefficient, \(X = d\)-dimensional observed covariates and \(d = \) number of covariates.

The NB-DP distribution can now be defined as a mixture of the NB distribution and a random distribution characterized by the DP with a precision parameter \(\tau \) and a base distribution \(F_0(.,|\theta) \) as follows,

\[p(Y = y|\mu, \phi, \tau, F_0(.,|\theta)) = \int NB(y|\nu\mu, \phi) dF \left(\nu|DP(\tau, F_0(.,|\theta)) \right) \quad (13) \]

The structure used to mix the negative binomial distribution and the random distribution \(F(.) \) is similar to the one that was used to introduce the mixture of the negative binomial and Lindley distribution (Geedipally et al., 2012). In this study, however, instead of the Lindley distribution, the NB distribution is mixed with a random distribution characterized by the DP to provide a more flexible model in order to better estimate the long term mean response of the negative binomial. Nonetheless, since the involved integration in NB-DP model does not have a closed form, the model cannot (or difficult) to be used with the format shown in Equation (13) to regress the count data. In order to solve this difficulty, the model was reformulated using the Bayesian hierarchical scheme as follows:

\[y_i|v_i\mu, \phi \sim NB(v_i\mu, \phi) \quad (14-a) \]
\[\mu_i = \exp(\beta_0 + \sum_{j=1}^{d} \beta_j x_{ij}) \quad (14-b) \]
\[v_i \sim F(.) \quad (14-c) \]
\[F(.) \sim DP(\tau, F_0(.,|\theta)) \quad (14-d) \]
The model described above can be thought in context of the generalized linear mixed model (GLMM) (Booth et al., 2003), where the mixed effects or frailty terms (v_i) are given a random distribution characterized by the DP with a precision parameter \(\tau \) and a base distribution \(F(.)|\theta \).

One simple way to think about it is that if the precision parameter was infinite or very large, the distribution of mixed effects (v_i) would be very close to the base distribution (i.e., simply v_i would follow the base distribution). The precision \(\tau \), however, controls how much we know about the base distribution and in that sense the DP provides a random distribution to better accommodate the dispersion in data. As stated in the previous section, the distribution of \(DP(\tau, F(.|\theta)) \) can be approximated by its truncated construction \(TDP(\tau, M, F(.|\theta)) \).

Consequently, the NB-TDP model can be seen as a hierarchical Bayesian model described as follows:

\[
\begin{align*}
 y_i | v_i, \mu, \phi & \sim NB(v_i \mu_i, \phi) & (15-a) \\
 \mu_i & = \exp(\beta_0 + \sum_{j=1}^{d} \beta_j x_{ij}) & (15-b) \\
 \gamma_k | \tau \sim Beta(1, \tau) , & \quad k = 1, 2, \ldots, M & (15-c) \\
 \psi_k | \theta \sim F_0(.|\theta) , & \quad k = 1, 2, \ldots, M & (15-d) \\
 p_k = \gamma_k \prod_{k'<k} (1 - \gamma_{k'}) , & \quad k = 1, 2, \ldots, M & (15-e) \\
 v_i & \sim F(.) & (15-f) \\
 F(.) & \sim TDP(\tau, M, F_0(.|\theta)) \equiv \sum_{k=1}^{M} p_k \delta_{\psi_k} & (15-g)
\end{align*}
\]

In addition to providing a greater flexibility, there is an added advantage of an in-built clustering algorithm in the model (Equation 15). This unique clustering by-product is based on how sites shared the mixed effect mass points. In other words, each mass point can be considered as a cluster. The clustering advantage can be used for different purposes, such as detecting groups of units with unusual results (detecting outliers), examining the characteristics of clusters to develop crash modification factors or to implement an appropriate countermeasure, or sources of dispersion, as described above. The NB-DP clustering by-product with its greater flexibility to detect the characteristics of subcategories could potentially provide a powerful alternative to the traditional latent class or finite mixture models (Park and Lord, 2009); the comparison should be the subject of further research.
In order to benefit from the clustering by-product, the hard clustering information (i.e., the information about which two data points shared the same mass point or cluster) should be recorded at each iteration of the Markov Chain Monte Carlo (MCMC) sampling. Let Z_{mn}^q be the component of the association matrix which is 1 if the data points “m” and “n” belong to the same cluster and 0 otherwise in the q-th MCMC sample. By definition, Z is symmetric and $Z_{mm} = 1$.

Now, the information in matrix Z can be used to elicit the clustering properties and perform further post-processing analyses (Ohlssen et al, 2007). For instance, the likelihood that site “m” and site “n” fall into the same cluster can be found by taking an average of Z_{mn}^q over all MCMC outputs. As another example, the matrix Z can be used to identify outliers. For this purpose, the variable W_m^q is defined as $W_m^q = \sum_{n=1}^{N} Z_{mn}^q$. The variable W_m^q shows the size of the cluster that the site “m” belonged to at the q-th iteration of the MCMC. Now, the mean of the cluster size can be found by taking an average of W_m^q over all MCMC outputs. Then, by choosing a threshold (say 3 for example), potential outliers can be detected.

Given an appropriate choice for the DP base distribution, all stages of the model (Equation 15) would involve only standard distributions. Therefore, the model can be implemented in a software program, such as WinBUGS (Spiegelhalter et al., 2003) to estimate the coefficients. Based on how the Bayesian model was parameterized and the definition of the Dirichlet process, the base distribution is a non-negative distribution that the analyst believes the frailty terms on average could follow a priori. In this study, we chose a log-normal distribution as the DP base distribution (i.e., $\ln(\nu_i) \sim N(\mu_b, \sigma_b^2)$). Likewise, the analyst must make sure that the NB-DP model is identifiable (i.e., median(ν_i) = 1) to eliminate possible correlation between the intercept (β_0) and mixed effects (ν). This issue can be overcome, initially, by dropping the intercept from the model ($\beta_0 = 0$); then, after the MCMC convergence, the intercept can be calculated as the log-median of the mixed effects as follows,

$$\beta_0 = \ln(\text{median}(\nu))$$

In Section 6, we will discuss another intuitive method to overcome the identifiability issue using the truncated centered Dirichlet process (TCDP) method based on Yang et al.'s (2010) idea to constrain the mean and variance of the Dirichlet process.
To fully specify the NB-TDP model, we chose a normal prior for β and μ_b, a gamma prior for ϕ, and a uniform prior for σ^2_ϕ and τ. Moreover, given Equation (6), if we assume $\varepsilon = 0.01$ and set the upper bound of the uniform prior that is considered for the precision parameter τ to 5, the parameter M would approximately be equal to 27. Hence, to round up, we set $M = 30$. The MCMC was performed with three different chains each with 30,000 iterations. The first 15,000 samples of each chain were regarded as burn-in samples and discarded from the MCMC outputs. The chains were diagnosed using the Gelman-Rubin (G–R) convergence statistic as well as the visual observations of the history plots. All chains mixed well and the G–R statistic was almost 1 for all parameter estimates.

4. Data Description

This section documents the statistics of the datasets that were used in the paper. The datasets were used to compare the performance of the NB-TDP GLM with NB and NB-L GLMs. The first subsection briefly describes the summary statistics of the Indiana dataset. The second subsection summarizes the characteristics of the Michigan dataset. Both datasets are characterized by high dispersion and have a heavy tail.

4.1. Indiana data

The Indiana data contain crash, average daily traffic (ADT) and geometric design data collected for the duration of five-years from 1995 to 1999 at 338 rural interstate road sections in Indiana. This dataset has been extensively used by others (Anastasopoulos et al., 2008; Washington et al., 2011; Geedipally et al., 2012). Out of 338 highway segments in this dataset, 120 of them did not experience any crash (approximately 36% of sites are reported with zero crash). Table 1 shows the summary statistics of the variables of this dataset. The complete list of variables can be found in Washington et al. (2011). The Indiana dataset is characterized by a heavy tail that was caused by the generating process of the data (i.e., the dataset includes observations with very large values).
Table 1: Indiana Data Characteristics (Geedipally et al., 2012)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Min</th>
<th>Max</th>
<th>Average</th>
<th>Std. dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of crashes (5 years)</td>
<td>0</td>
<td>329</td>
<td>16.97</td>
<td>36.30</td>
</tr>
<tr>
<td>Average daily traffic in 5 years (ADT)</td>
<td>9,942</td>
<td>143,422</td>
<td>30,237.6</td>
<td>2,8776.4</td>
</tr>
<tr>
<td>Minimum friction reading in the road segment over the 5-year period (FRICTION)</td>
<td>15.9</td>
<td>48.2</td>
<td>30.51</td>
<td>6.67</td>
</tr>
<tr>
<td>Pavement surface type (1 if asphalt, 0 if concrete) (PAVEMENT)</td>
<td>0</td>
<td>1</td>
<td>0.77</td>
<td>0.42</td>
</tr>
<tr>
<td>Median width (feet) (MW)</td>
<td>16</td>
<td>194.7</td>
<td>66.98</td>
<td>34.17</td>
</tr>
<tr>
<td>Presence of the median barrier (1 if present, 0 if absent) (BARRIER)</td>
<td>0</td>
<td>1</td>
<td>0.16</td>
<td>0.37</td>
</tr>
<tr>
<td>Interior rumble strips (RUMBLE)</td>
<td>0</td>
<td>1</td>
<td>0.72</td>
<td>0.45</td>
</tr>
<tr>
<td>Segment length (in miles) (L)</td>
<td>0.009</td>
<td>11.53</td>
<td>0.89</td>
<td>1.48</td>
</tr>
</tbody>
</table>

4.2. Michigan data

The Michigan dataset includes 3,397 randomly selected (10% of the original dataset) rural two-lane highways segments in Michigan that contained single-vehicle crashes occurred in 2006; this sample was selected because of the WinBUGS memory limitation. The original dataset was collected from the Federal Highway Administration’s (FHWA) Highway Safety Information System (HSIS). The dataset was used previously in Qin et al. (2004) to develop zero-inflated models and in Geedipally et al. (2012) to develop the NB-L GLM. In this dataset, about 70% of segments did not experience any crash. The summary statistics of the data used in this paper are shown in Table 2.

Table 2: Michigan Data Characteristics (Qin et al., 2004)*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Min</th>
<th>Max</th>
<th>Average</th>
<th>Std. dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Crashes (1 year)</td>
<td>0</td>
<td>40</td>
<td>0.717</td>
<td>1.782</td>
</tr>
<tr>
<td>Annual average daily traffic (AADT)</td>
<td>250</td>
<td>19,990</td>
<td>4,531.77</td>
<td>3,290.66</td>
</tr>
<tr>
<td>Segment length (miles) (L)</td>
<td>0.001</td>
<td>4.323</td>
<td>0.18</td>
<td>0.33</td>
</tr>
<tr>
<td>Shoulder width (feet) (SW)</td>
<td>0</td>
<td>12</td>
<td>8.46</td>
<td>2.80</td>
</tr>
<tr>
<td>Lane width (feet) (LW)</td>
<td>8</td>
<td>15</td>
<td>11.25</td>
<td>0.79</td>
</tr>
<tr>
<td>Speed limit (mph) (SPEED)</td>
<td>25</td>
<td>55</td>
<td>52.49</td>
<td>6.34</td>
</tr>
</tbody>
</table>

* Randomly selected 10% of the original dataset.

5. Modeling Results

This section documents the detailed results of the application of the NB-TDP GLM to the Indiana and Michigan datasets. In addition, the NB-TDP model is compared with the NB and the NB-L GLMs.
5.1 Indiana data

In all models, the segment length was considered as an offset; thus, it is assumed that the number of crashes increases linearly as the segment length increases. Table 3 presents the modeling results for the Indiana data for the NB, NB-L and NB-TDP GLMs. Given the goodness-of-fit (GOF) statistics shown in this table, the NB-TDP model showed a better fit compared to other GLMs. A key point to compare different models together based on GOF measures, however, is to consider their complexities. The Deviance Information Criterion (DIC) penalizes the model complexity in its estimate; hence, a more reliable option to employ when models are characterized by different complexities (as it is in our case). It must be noted that the DIC for flexible models needs to be calculated with some cautions as it may give rise to bi-modal marginal distributions for the estimates (Ohlssen et al., 2007). For this reason, WinBUGS does not calculate the DIC automatically for flexible models. However, similar to what was experienced in Ohlssen et al. (2007), only a few bimodal distributions were identified for the estimates; hence, the DIC measure for this model can also be calculated outside of WinBUGS. The approach discussed in Geedipally et al. (2014) for estimating the DIC was used in this research. As it is indicated in Table 3, for this dataset, the NB-TDP model showed a better DIC between the models analyzed.

<table>
<thead>
<tr>
<th>Variable</th>
<th>NB</th>
<th></th>
<th>NB-L</th>
<th></th>
<th>NB-TDP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>value</td>
<td>Std. dev</td>
<td>value</td>
<td>Std. dev</td>
<td>value</td>
<td>Std. dev</td>
</tr>
<tr>
<td>Intercept (β_0)</td>
<td>-4.779</td>
<td>0.979</td>
<td>-3.739</td>
<td>1.115</td>
<td>-7.547</td>
<td>1.227</td>
</tr>
<tr>
<td>Ln(ADT) (β_1)</td>
<td>0.722</td>
<td>0.091</td>
<td>0.630</td>
<td>0.106</td>
<td>0.983</td>
<td>0.117</td>
</tr>
<tr>
<td>Friction (β_2)</td>
<td>-0.02774</td>
<td>0.008</td>
<td>-0.02746</td>
<td>0.011</td>
<td>-0.01999</td>
<td>0.008</td>
</tr>
<tr>
<td>Pavement (β_3)</td>
<td>0.4613</td>
<td>0.135</td>
<td>0.4327</td>
<td>0.217</td>
<td>0.3942</td>
<td>0.152</td>
</tr>
<tr>
<td>MW (β_4)</td>
<td>-0.00497</td>
<td>0.001</td>
<td>-0.00616</td>
<td>0.002</td>
<td>-0.00468</td>
<td>0.002</td>
</tr>
<tr>
<td>Barrier (β_5)</td>
<td>-3.195</td>
<td>0.234</td>
<td>-3.238</td>
<td>0.326</td>
<td>-8.035</td>
<td>1.225</td>
</tr>
<tr>
<td>Rumble (β_6)</td>
<td>-0.4047</td>
<td>0.131</td>
<td>-0.3976</td>
<td>0.213</td>
<td>-0.3780</td>
<td>0.150</td>
</tr>
<tr>
<td>$\alpha = 1/\varphi$</td>
<td>0.934</td>
<td>0.118</td>
<td>0.238</td>
<td>0.083</td>
<td>0.301</td>
<td>0.085</td>
</tr>
<tr>
<td>DICa</td>
<td>1900</td>
<td>1701</td>
<td></td>
<td></td>
<td>1638</td>
<td></td>
</tr>
<tr>
<td>MADb</td>
<td>6.91</td>
<td>6.89</td>
<td></td>
<td></td>
<td>6.63</td>
<td></td>
</tr>
<tr>
<td>MSPEc</td>
<td>206.79</td>
<td>195.54</td>
<td></td>
<td></td>
<td>194.5</td>
<td></td>
</tr>
</tbody>
</table>

a Deviance Information Criterion.
b Mean Absolute Deviance (Oh et al., 2003).
c Mean Squared Predictive Error (Oh et al., 2003)
For all models, the 95% posterior credible region of none of the parameters includes zero; hence, all included variables are statistically significant. In addition, all coefficients have the same and intuitively reasonable sign. However, the estimated coefficient for each model is not necessarily the same. In particular, as a key covariate to predict the number of crashes, different models estimated different ADT coefficients. The ADT coefficient is below 1 based on the NB and NB-L modeling results; it is, however, almost 1 based on the NB-TDP modeling results. Therefore, as the ADT increases, the number of crashes increases at a decreasing rate given the NB and NB-L estimate while almost linearly given the NB-TDP estimate. The cumulative residual (CURE) plot can be used to investigate this observation in detail. The cumulative residual plot estimates how well the proposed model fits data regarding key covariates (Hauer and Bamfo 1997). A better fit, then, occurs once this plot oscillates more closely around zero. For a better comparison, the CURE plot is usually adjusted to make the final cumulative value to be zero. Figure 1 presents the adjusted CURE plot with respect to the ADT covariate (a key variable to estimate the number of crashes). Figure 1 shows that, with respect to the ADT covariate, both NB-L and NB-TDP models fit the Indiana data better than the NB model.

![Figure 1: CURE Plots for the Indiana Dataset for the ADT Variable](image)

(Note: Dotted lines represent ± 2 Std. Dev.)
As discussed in Section 3, as a by-product of the NB-TDP GLM, data can be classified into finite number of clusters. This clustering property is based on how different sites share the mixed effect mass points (ν). In order to benefit from the advantage of clustering, the partitioning information matrix needs to be recorded at each iteration of the MCMC, as discussed earlier. The matrix can be used to investigate similarities between sites especially with regards to recognizing unobserved variables (note: in our model, the DP was elicited on mixed effects), or identifying safety issues and deploying countermeasures.

Let the 338 sites in the Indiana dataset be marked in descending order of ADT values in numbers from 1 to 338. Figures 2 shows the heatmap representation of the partitioning matrix for the top 10 sites with the highest ADT values. The figure shows the likelihood that site “X” and “Y” fall into same cluster. For simplicity, the probabilities were rounded to the first decimal. A higher likelihood will be represented by a darker shade in the map. As observed in this figure, for instance, with relatively high probability (~60%), site “1” falls into the same cluster as site “2”, site “3” or several more. This information can offer insights to identify potential unobserved variables or safety issues and decide on appropriate countermeasures for the site “1”. On the other hand, the probability that site “1” falls into the same cluster as site “9” or site “10” is very small (~10%); hence, there are very few similarities between these sites. In short, the heatmap can be extended to the entire network and be plotted in a 338×338 dimension matrix, which can provide a great visual tool to investigate similarities or dissimilarities between sites, at least with regard to identifying unobserved variables or safety issues. It is worth pointing out that the NB-TDP GLM, on average, classified the Indiana data into approximately 10 clusters (note: the posterior estimation of the precision parameter τ is equal to 2.01).
Figure 2: The Heatmap Representation of the Partitioning Matrix for the Top 10 Sites with the Highest ADT Values in the Indiana Dataset.

5.2 Michigan Data

The functional form that was used in Qin et al. (2004) and Geedipally et al. (2012) to analyze the original dataset is used here in order to compare the models adequately. Unlike the Indiana data, the segment length was considered as a covariate in models (i.e., it is not an offset) similar to the original 2004 paper. However, as shown in Table 4, the coefficient of the segment length is almost 1 for all models; hence, the number of crashes increases almost linearly once the segment length increases. Table 4 shows the rest of the modeling results. The sign for all the coefficients
(those that are statistically significant) are the same as those found in Qin et al. (2004) and were left as is to be consistent with their work. For this dataset, unlike the Indiana data, different models estimated relatively similar coefficient values. Table 4 shows that the NB-TDP model fits data slightly better than the NB and NB-L models based on the Mean Absolute Deviance (MAD) and Mean Squared Predictive Error (MSPE) GOF measures (Oh et al., 2003). Given the DIC measure, both NB-L and NB-TDP models (as a class of multi-parameter models) fit the Michigan data better than the NB model; as discussed above, the DIC is a better measure of fit for complex hierarchical models than GOF measures based on the model errors since it penalizes the model complexity. The posterior estimate of the precision parameter τ for this dataset is equal to 3.29 and data on average were classified into 21.34 clusters. Note that, intuitively, it is expected that the crash data be grouped into more clusters once the number of sites in the dataset increases.

Table 4: Modeling Results for the Michigan Data

<table>
<thead>
<tr>
<th>Variable</th>
<th>NB</th>
<th>NB-L</th>
<th>NB-TDP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>value</td>
<td>Std. dev</td>
<td>value</td>
</tr>
<tr>
<td>Intercept (β_0)</td>
<td>-3.581</td>
<td>0.6353</td>
<td>-3.508</td>
</tr>
<tr>
<td>Ln(ADT) (β_1)</td>
<td>0.4521</td>
<td>0.03935</td>
<td>0.4491</td>
</tr>
<tr>
<td>Ln(L) (β_2)</td>
<td>0.942</td>
<td>0.02659</td>
<td>0.940</td>
</tr>
<tr>
<td>SW(β_3)</td>
<td>0.00425</td>
<td>0.0137</td>
<td>0.00491</td>
</tr>
<tr>
<td>LW (β_4)</td>
<td>0.018</td>
<td>0.03664</td>
<td>0.018</td>
</tr>
<tr>
<td>Speed (β_5)</td>
<td>0.018</td>
<td>0.006298</td>
<td>0.018</td>
</tr>
<tr>
<td>$\alpha = 1/\varphi$</td>
<td>0.6165</td>
<td>0.0617</td>
<td>0.0262</td>
</tr>
<tr>
<td>DICb</td>
<td>6223</td>
<td></td>
<td>5796</td>
</tr>
<tr>
<td>MADc</td>
<td>0.682</td>
<td>0.689</td>
<td></td>
</tr>
<tr>
<td>MSPEd</td>
<td>1.635</td>
<td>1.641</td>
<td></td>
</tr>
</tbody>
</table>

a Italic means not statistically significant at the 5% level.
b Deviance Information Criterion.
c Mean Absolute Deviance (Oh et al., 2003).
d Mean Squared Predictive Error (Oh et al., 2003).

For this dataset, the DIC for the NB-L model is better than the NB-TDP model. This is due the fact that, first, the NB-L mixture with its fixed distribution is specifically designed to accommodate data with many zeros (i.e., the NB-L distribution has a large density at zero). The NB-TDP model, on the other hand, provides more flexibility to capture the variation in data. Unlike the heavy tail in the Indiana data, which was characterized by a high variation caused by data points with a large number of crashes as well as a relatively smaller number of zero values
(the range is 329 with ~36% zeros), the heavy tail in the Michigan dataset is characterized by a large number of zero values (the range is 40 with ~70% zeros). Second, we assumed a uniform distribution for the precision parameter and set the number of NB-TDP mass points to 30. In this case, the precision parameter can adapt to the data, and these data can be grouped up to 30 clusters. For cases where the safety analyst would like to attain a better fit, the precision parameter can be centered around larger values and the NB-TDP can be truncated with a larger number of mass points (clusters). The latter approach, however, can be problematic to implement in WinBUGS due to its limitations; hence, the analyst should try other alternatives. Some alternative approaches to inference the Dirichlet process are discussed in Section 6.

As a closing note, it must be noted that the primary goal in selecting a competitive model should not be based only on GOF measures. In addition to the GOF, the transportation safety analyst should examine other issues such as the data generating process, the relationship between variables and if the proposed model is logically or theoretically sound. The later characteristics are referred to as “goodness-of-logic” (GOL) in Miaou and Lord (2003).

6. Discussion

The application of the NB-DP or NB-TDP merits important discussion points. Recall that we have proposed a multi-level hierarchical model to account for over-dispersion and elicited a DP prior on the random effects to provide modeling flexibility. One of the critical choices we made was to truncate the Dirichlet process to have finite number of components. Statistical inference in such complex models is facilitated by employing simulation techniques, such as the MCMC. We coded the truncated model in WinBUGS to estimate the model’s coefficients (i.e., infer the parameters). There are several aspects that need to be discussed with building the model and the subsequent analysis undertaken in this work, namely, truncation and inference, centering and scaling of the Dirichlet process prior for identifiability and better convergence, and the clustering property.

There are two major tasks involved in Bayesian model building: model elicitation and inference. Traditionally, except in very limited cases, Bayesian modeling in general and Bayesian nonparametric in particular, rely on MCMC for inference, as the models are generally non-tractable. One of the earliest approaches to inference under the full DP representation was
due to the seminal work by Escobar and West (1995), followed by several others (Escobar and West, 1998; MacEachern and Muller, 1998). Inference in more complex models, however, was made possible due to samplers, such as the slice sampling method (Griffin and Walker, 2011; Kalli et al. 2011). Another interesting avenue was considered by approximating the DP with a finite sum representation (Ishwaran and Zarepour, 2002). The advantage with the finite sum based approximation is that, the resulting model is much simpler and often can be fitted using standard software programs, such as WinBUGS. Consequently, the analyst can focus on trying several different models without worrying about writing a new sampler or debugging. However, such approximation comes at a cost: where to truncate? Fortunately, heuristics are available (Ishwaran and James, 2001; Ohlssen et al., 2007) to provide reasonable results, which may work very well in practice, as was the case in this study. However, the same benefit of finite sums representation can be achieved even without truncation, as it is the core idea behind retrospective sampling (Papaspiliopoulos and Roberts, 2008). In this case, a price that one needs to pay is that a significant amount of effort is required in designing and developing the samplers, as opposed to focusing more on model building.

Another very useful approach to approximate inference, the Variational Inference, tries to approximate the true posterior with its closest parametric counterpart that is much more tractable analytically (Blei and Jordan, 2006). In fact, off late, approximate inferences as opposed to exact inferences are becoming popular, such as the Approximate Bayesian Computation (ABC) framework (Beaumont et al., 2002; Pudlo et al., 2014) and the emerging methods under the umbrella of Big Data (Neiswanger et al., 2013; Bardenet et al. 2014; Quiroz et al., 2015). The approximate inference methods can also be found in the frequentist literature (see Bhat, 2014). The exact approaches to inference can be carried out when the analyst has reasonable understanding of the domain (or data) with respect to model elicitation. The motivation for choosing approximate inferential methods is speed and agility, either in model building or fitting or both. In subsequent work in this area, we will focus on efficient inference mechanisms that exploit the model characteristics.

An important challenge we faced in this work was the parameterization and identifiability. As discussed briefly earlier, the intercept term and the mean of the random effects are correlated. An alternative approach to solve the identifiability issue as well as to obtain a
better convergence properties, is to model the random effects v_i with the TCDP with constrained variance using the idea proposed in Yang et al. (2010), instead of simple truncated Dirichlet process. The TCDP model given the precision parameter τ and log-normal base distribution is structured as:

$$\ln(v_i) \sim \text{TCDP} (\tau, M, N(\mu_b, \sigma_b^2))$$

If and only if

$$\gamma_k \sim \text{Beta}(1, 1), \quad k = 1, 2, \ldots, M \quad (16-a)$$

$$\psi_k | \mu_b, \sigma_b^2 \sim N(\mu_b, \sigma_b^2), \quad k = 1, 2, \ldots, M \quad (16-b)$$

$$p_k = \gamma_k \prod_{k' < k} (1 - \gamma_{k'}) , \quad k = 1, 2, \ldots, M \quad (16-c)$$

$$\omega_k \sim \sum_{k=1}^{M} p_k \delta_{\psi_k} \quad (16-d)$$

$$\ln(v_i) = \frac{\omega_k - \mu_{DP}}{\sqrt{V_{DP}}} \quad (16-e)$$

where μ_{DP} and V_{DP} are defined in Equations (3) and (4) respectively. Therefore,

$$\text{median}(v) \approx 1$$

Using the TCDP, not only the median of the mixed effect would be approximately equal to 1, but we also control the variance of the DP to provide a better convergence. Although the TCDP model has a nice interpretation and showed very good convergence properties, its implementation in WinBUGS is very time-consuming for large-scale datasets due to WinBUGS coding limitations.

Finally, one of defining characteristics of the DP is that it allows for ties in the observations as the DP is a discrete distribution almost surely. Consequently, during each iteration of the MCMC, the random affects are partitioned into clusters. This property of the DP is exploited to post-process MCMC samples to obtain clustering information (Medvedovic and Sivaganesan, 2002). The clustering information thus obtained can be used to gain further insights about the problem at hand (for example, which two sites are clustered together). In this regard, the NB-DP offers great opportunities for analyzing crash data in various different ways. Another
utility of the clustering information is to detect outliers. For example, if one defines an outlier as belong to a cluster with no more two members in it, then in that regard, singleton clusters can be defined as outliers and can be inspected for potential risk factors. In fact, the notion of outlier can be handled much more formally, as is done in Heinzl and Tutz (2013). Indeed, a rich class of models exist in Bayesian nonparametric, such as the Product Partition Models, when inference on the partitions is of primary interest (Mitra and Muller, 2015).

7. Summary

This paper has documented the development and application of the NB-DP (or NB-TDP to be exact) GLM for analyzing over-dispersed crash data characterized by a long or heavy tail. This new model mixes the NB distribution with a random distribution characterized by the DP. The model can be thought in context of the Bayesian hierarchical modeling framework, where the mixed effects are given a flexible distribution. In fact, each draw from the DP is a distribution and in that sense, instead of being constrained to a particular shape or distribution, a range of distributions is considered as a prior for random effects. In that regard, it provides more flexibility for the model to capture the variation in the data as well as handling issues, such as a heavy tail. The NB-DP was applied to two datasets that were characterized with a heavy tail. The results were compared with the NB and NB-L models. The results showed that the NB-DP offered much greatly flexibility and a better fit compared to the NB model. Although the NB-L might work better with the dataset with many zeros, the NB-DP is actually more flexible to capture the dispersion in data, especially when the highly dispersed dataset has a heavy tail, but smaller percentage of zero counts. In addition to a greater flexibility, the proposed model groups the data points into finite number of clusters. The clustering information can provide further insights for the transportation safety analyst, such as a better understanding of the data at hand, identify safety issues and decide on countermeasures.

Acknowledgements

The authors would like to thank Dr. Jeffer Hart from the statistics department of the Texas A&M University for sharing his valuable insights with us. The paper benefitted from the input of two anonymous reviewers. Their comments were greatly appreciated.
References

