Manual on
Uniform Traffic
Control Devices
for Streets and Highways

PREPARED BY A JOINT COMMITTEE OF
American Association of
State Highway Officials
Institute of Traffic Engineers
National Conference on
Street and Highway Safety

PUBLIC ROADS ADMINISTRATION
FEDERAL WORKS AGENCY
Washington, D. C. August 1948
JOINT COMMITTEE ON UNIFORM TRAFFIC CONTROL DEVICES

COMMITTEE MEMBERSHIP

From the American Association of State Highway Officials

H. E. HILTS, chairman, Deputy Commissioner in charge of design, Public Roads Administration, Washington, D. C.
WALTER F. ROSENWALD, vice-chairman, Traffic Engineer, State Department of Highways, St. Paul, Minn. (Died January 6, 1948)
EDGAR F. COPEL, Traffic Engineer, State Department of Public Works, Boston, Mass.
F. B. CHANDLER, Traffic Engineer, State Highway Department, Salem, Oreg.
J. CARL McMONAGLE, Director, Planning and Traffic Division, State Highway Department, Lansing, Mich.
HARRY E. NEAL, Chief Engineer, Division of Traffic and Safety, State Department of Highways, Columbus, Ohio.

From the Institute of Traffic Engineers

WILLIAM C. BRANDS, Traffic Engineer, Department of Traffic Control, Dallas, Tex.
HAROLD F. HAMMELL, Manager, Transportation and Communication Department, Chamber of Commerce of the United States, Washington, D. C.
ROSS C. HARPER, Chief, Traffic Engineering Bureau, Detroit, Mich.
ROBERT A. MITCHELL, Chief, Bureau of Traffic Engineering, Department of Public Safety, Philadelphia, Pa.
EARL J. RENZER, City Traffic Engineer, Miami, Fla.
WILLIAM S. SMITH, Associate Director, Bureau of Highway Traffic, Yale University, New Haven, Conn.
LESLIE J. SORENSEN, Chairman, Chicago Street Traffic Commission, Chicago, Ill.

From the National Conference on Street and Highway Safety
(Now the National Committee on Uniform Traffic Laws and Ordinances)

DONALD B. BERRY, Director, Traffic and Transportation Division, National Safety Council, Chicago, Ill.
W. GRAHAM COLE, Assistant Secretary, Metropolitan Life Insurance Company, New York, N. Y.
J. W. JOHNSON, Chief Engineer, California State Automobile Association, San Francisco, Calif.
BURTON W. MARSH, Director, Traffic Engineering and Safety Department, American Automobile Association, Washington, D. C.
D. GRANT MICKLE, Director, Division of Traffic Safety, Automotive Safety Foundation, Washington, D. C.
H. C. SAMPSON, Superintendent, Signals and Telegraph, Alton Railroad, Bloomington, Ill.
C. W. STAHR, editor, Secretary, National Committee on Uniform Traffic Laws and Ordinances, Washington, D. C.

W. G. ELIOT, 3d. secretary, Highway Engineer, Public Roads Administration, Washington, D. C.
COMMITTEE ORGANIZATION
H. E. Hill, chairman
W. F. Rosenwald, vice-chairman
C. W. Stark, editor
W. G. Elliot, 3d, secretary

Subcommittee on Signs
Harry E. Neal, chairman
W. G. Elliot, 3d, secretary
Edgar F. Copell
Ross C. Harper
J. W. Johnson
Walter F. Rosenwald
I. L. Thomas, Jr.
Charles L. Winters

Subcommittee on Markings
Ross C. Harper, chairman
W. G. Elliot, 3d, secretary
D. Grant Mickle
Harry E. Neal
I. L. Thomas, Jr.

Subcommittee on Signals
Robert A. Mitchell, chairman
H. C. Sampson
C. W. Prick
Edgar F. Copell
Leslie J. Sorenson
Harold F. Haukmon

Subcommittee on Islands
William C. Brandes, chairman
D. W. Loutzenheiser
Earl J. Reeder
C. W. Stark

Subcommittee on Special Problems
Burton W. Marsh, chairman
Donal S. Berry
William C. Brandes
W. Graham Cole
Ross C. Harper
Robert A. Mitchell
Harry E. Neal
C. W. Stark

Subcommittee on Research
Wilbur S. Smith, chairman
D. W. Loutzenheiser
Robert A. Mitchell
W. G. Elliot, 3d
Harry E. Neal
Ross C. Harper
C. W. Prick

Subcommittee on Editing
C. W. Stark, chairman
W. G. Elliot, 3d
Harold F. Haukmon
D. W. Loutzenheiser
Burton W. Marsh
D. Grant Mickle
C. W. Prick

1 Highway Engineer, Public Roads Administration, Washington, D.C.
2 District Engineer, State Department of Public Works, Buffalo, N.Y.

CONTENTS

Introduction... 1
Use and misuse of traffic control devices........... 2
Responsibility for selection and installation...... 3
Definitions... 3
Relating to the highway............................... 4
Relating to traffic...................................... 4
Relating to signs....................................... 4
Relating to markings.................................... 5
Relating to signals..................................... 5
Relating to islands..................................... 5

Part I—SIGNS

A—Introduction
Section 1. Function of signs............................. 7
Section 2. Legal authority............................... 7
Section 3. Classification of signs...................... 8
Section 4. Excessive use of signs...................... 8
Section 5. Standardization of signs.................... 8
Section 6. Standardization of design................... 8
Section 7. Sign shapes................................... 8
Section 8. Colors... 9
Section 9. Dimensions.................................... 9
Section 10. Symbols....................................... 10
Section 11. Word messages............................... 10
Section 12. Lettering...................................... 10
Section 13. Illumination and reflectorization........ 10
Section 14. Means of illumination...................... 10
Section 15. Means of reflectorization................ 11
Section 16. Sign borders................................ 12
Section 17. Standardization of position............... 12
Section 18. Standardization of application.......... 13
Section 19. Erection...................................... 13
Section 20. Materials.................................... 16
Section 21. Sign posts and their foundations........ 16
Section 22. Maintenance.................................. 16
Section 23. Reflector markers......................... 17
Section 24. Major routes............................... 17

B—Regulatory Signs
Section 25. Application of regulatory signs........ 17
Section 26. Classification of regulatory signs...... 17
Section 27. Design of regulatory signs................. 18
Section 28. Stop sign.................................... 18
Section 29. Design of Stop sign......................... 18
Section 30. Warrants for Stop sign..................... 19
Section 31. Location of Stop sign....................... 19
Section 32. Speed Limit sign.............................. 20
Section 33. Location of Speed Limit sign.............. 22
Section 34. Night Speed sign............................. 23
Section 35. Speed Zone Ahead sign...................... 23
Section 36. End (35) Mile Speed sign................... 24
Section 37. Turn Prohibition signs...................... 24
Section 38. Traffic Signal Speed sign.................. 25
Section 39. No Passing sign............................. 25
Section 40. End No Passing Zone sign.................. 26
Section 41. Keep Right Except to Pass sign.......... 26
Section 42. Keep Right sign............................. 26
Section 43. Do Not Enter sign............................ 27
Section 44. Selective exclusion signs.................. 27
Section 45. One Way sign................................ 28
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>48. Parking and stopping signs</td>
<td>30</td>
</tr>
<tr>
<td>49. Parking signs in rural districts</td>
<td>32</td>
</tr>
<tr>
<td>50. Walk on Left sign</td>
<td>32</td>
</tr>
<tr>
<td>51. Pedestrian Crossing signs</td>
<td>33</td>
</tr>
<tr>
<td>52. Pedestrian-Actuated Signal sign</td>
<td>33</td>
</tr>
<tr>
<td>53. Road Closed sign</td>
<td>33</td>
</tr>
<tr>
<td>54. Load Limit sign</td>
<td>34</td>
</tr>
<tr>
<td>55. Other regulatory signs</td>
<td>35</td>
</tr>
</tbody>
</table>

C—Warning Signs

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>56. Application of warning signs</td>
<td>35</td>
</tr>
<tr>
<td>57. Design of warning signs</td>
<td>38</td>
</tr>
<tr>
<td>58. Location of warning signs</td>
<td>38</td>
</tr>
<tr>
<td>59. Turn sign</td>
<td>30</td>
</tr>
<tr>
<td>60. Curve sign</td>
<td>30</td>
</tr>
<tr>
<td>61. Reverse Turn sign</td>
<td>30</td>
</tr>
<tr>
<td>62. Reverse Crossing sign</td>
<td>41</td>
</tr>
<tr>
<td>63. Winding Road sign</td>
<td>41</td>
</tr>
<tr>
<td>64. Cross Road sign</td>
<td>41</td>
</tr>
<tr>
<td>65. Side Road sign</td>
<td>42</td>
</tr>
<tr>
<td>66. Y Symbol sign</td>
<td>43</td>
</tr>
<tr>
<td>67. Large Arrow sign</td>
<td>43</td>
</tr>
<tr>
<td>68. Stop Ahead sign</td>
<td>44</td>
</tr>
<tr>
<td>69. Signals Ahead sign</td>
<td>44</td>
</tr>
<tr>
<td>70. Hill sign</td>
<td>44</td>
</tr>
<tr>
<td>71. Dip sign</td>
<td>45</td>
</tr>
<tr>
<td>72. Narrow Road sign</td>
<td>46</td>
</tr>
<tr>
<td>73. Pavement Narrow sign</td>
<td>46</td>
</tr>
<tr>
<td>74. Divided Highway Ends sign</td>
<td>47</td>
</tr>
<tr>
<td>75. Narrow Bridge sign</td>
<td>47</td>
</tr>
<tr>
<td>76. One Lane Bridge sign</td>
<td>47</td>
</tr>
<tr>
<td>77. Low Clearance</td>
<td>48</td>
</tr>
<tr>
<td>78. Pavement Ends sign</td>
<td>48</td>
</tr>
<tr>
<td>79. Men Working sign</td>
<td>48</td>
</tr>
<tr>
<td>80. Bump sign</td>
<td>49</td>
</tr>
<tr>
<td>81. Soft Shoulders sign</td>
<td>49</td>
</tr>
<tr>
<td>82. Slippery When Wet sign</td>
<td>50</td>
</tr>
<tr>
<td>83. Double Arm</td>
<td>50</td>
</tr>
<tr>
<td>84. School sign</td>
<td>50</td>
</tr>
<tr>
<td>85. Railroad Advance Warning sign</td>
<td>51</td>
</tr>
<tr>
<td>86. Railroad Crossbuck sign</td>
<td>52</td>
</tr>
<tr>
<td>87. Crossing signs</td>
<td>52</td>
</tr>
<tr>
<td>88. Advisory Speed sign</td>
<td>53</td>
</tr>
<tr>
<td>89. Other warning signs</td>
<td>53</td>
</tr>
</tbody>
</table>

D—Guide Signs

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>93. Application of guide signs</td>
<td>53</td>
</tr>
<tr>
<td>94. Design of guide signs</td>
<td>54</td>
</tr>
<tr>
<td>95. Route markers and auxiliary markers</td>
<td>54</td>
</tr>
<tr>
<td>96. Design of Route Markers</td>
<td>54</td>
</tr>
<tr>
<td>97. Overhead Route Markers</td>
<td>55</td>
</tr>
<tr>
<td>98. Confirming and Recessions Markers</td>
<td>55</td>
</tr>
<tr>
<td>99. Junction sign</td>
<td>57</td>
</tr>
<tr>
<td>100. Overpass Junction sign</td>
<td>58</td>
</tr>
<tr>
<td>101. Combination Junction sign</td>
<td>60</td>
</tr>
<tr>
<td>102. Advance Turn Marker</td>
<td>60</td>
</tr>
<tr>
<td>103. Overtake Turn Marker</td>
<td>63</td>
</tr>
<tr>
<td>104. Directional Marker</td>
<td>63</td>
</tr>
<tr>
<td>105. Location of directional marking assemblies</td>
<td>65</td>
</tr>
<tr>
<td>106. Overwide Directional Marker</td>
<td>66</td>
</tr>
<tr>
<td>107. Temporary Marker</td>
<td>66</td>
</tr>
<tr>
<td>108. Alternate Marker</td>
<td>66</td>
</tr>
</tbody>
</table>

Part II—MARKINGS

A—Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>118. Functions and limitations of markings</td>
<td>75</td>
</tr>
<tr>
<td>119. Legal authority</td>
<td>75</td>
</tr>
<tr>
<td>120. Standardization</td>
<td>75</td>
</tr>
<tr>
<td>121. Types of markings</td>
<td>75</td>
</tr>
<tr>
<td>122. Materials</td>
<td>76</td>
</tr>
<tr>
<td>123. Overhead</td>
<td>77</td>
</tr>
<tr>
<td>124. Types of striping</td>
<td>78</td>
</tr>
<tr>
<td>125. Width of lines</td>
<td>79</td>
</tr>
<tr>
<td>126. Reflectors</td>
<td>79</td>
</tr>
<tr>
<td>127. Maintenance</td>
<td>79</td>
</tr>
</tbody>
</table>

B—Pavement and Curb Markings

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>128. Center lines</td>
<td>79</td>
</tr>
<tr>
<td>129. Center lines on rural roads</td>
<td>80</td>
</tr>
<tr>
<td>130. Center lines on urban streets</td>
<td>81</td>
</tr>
<tr>
<td>131. Lane lines</td>
<td>81</td>
</tr>
<tr>
<td>132. Lane lines on rural roads</td>
<td>81</td>
</tr>
<tr>
<td>133. Lane lines on urban streets</td>
<td>81</td>
</tr>
<tr>
<td>134. No-passing zones</td>
<td>82</td>
</tr>
<tr>
<td>135. No-passing zones on two- and three-lane roadways</td>
<td>82</td>
</tr>
<tr>
<td>136. Warrants for no-passing zones</td>
<td>84</td>
</tr>
<tr>
<td>137. Pavement edges</td>
<td>86</td>
</tr>
<tr>
<td>138. Pavement-width transitions</td>
<td>86</td>
</tr>
<tr>
<td>139. Approach to an obstruction</td>
<td>86</td>
</tr>
<tr>
<td>140. Streetcar clearance lines</td>
<td>88</td>
</tr>
<tr>
<td>141. Turn markings</td>
<td>88</td>
</tr>
<tr>
<td>142. Transverse lines</td>
<td>91</td>
</tr>
<tr>
<td>143. Stop lines</td>
<td>91</td>
</tr>
<tr>
<td>144. Cross-walk lines</td>
<td>91</td>
</tr>
<tr>
<td>145. Route directions</td>
<td>93</td>
</tr>
<tr>
<td>146. Approach to railroad crossing</td>
<td>93</td>
</tr>
<tr>
<td>147. Parking space limits</td>
<td>93</td>
</tr>
<tr>
<td>148. Word markings</td>
<td>95</td>
</tr>
<tr>
<td>149. Curb markings for parking restrictions</td>
<td>96</td>
</tr>
</tbody>
</table>

C—Object Markings

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>150. Application of object markings</td>
<td>95</td>
</tr>
<tr>
<td>151. Objects within the roadway</td>
<td>97</td>
</tr>
<tr>
<td>152. Lighting or reflectorization of obstructions</td>
<td>97</td>
</tr>
<tr>
<td>153. Object markings on curbs</td>
<td>99</td>
</tr>
<tr>
<td>154. Objects adjacent to the roadway</td>
<td>99</td>
</tr>
</tbody>
</table>

D—Reflector Markers

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>155. Application of reflector markers</td>
<td>99</td>
</tr>
<tr>
<td>156. Hazard markers</td>
<td>99</td>
</tr>
<tr>
<td>157. Delimiters</td>
<td>100</td>
</tr>
</tbody>
</table>

Part III—SIGNALS

A—Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>158. Definitions</td>
<td>103</td>
</tr>
<tr>
<td>159. Value of signals</td>
<td>103</td>
</tr>
<tr>
<td>160. Standardization</td>
<td>104</td>
</tr>
<tr>
<td>161. Legal authority</td>
<td>104</td>
</tr>
<tr>
<td>162. Classification</td>
<td>105</td>
</tr>
</tbody>
</table>
Section 219. Signal timing in accordance with traffic requirements

Section 220. Division of total cycle time

Section 221. Coordination of fixed-time signals

Section 222. Types and selection of coordination

Section 223. Simultaneous operation

Section 224. Alternate system

Section 225. Simple progressive system

Section 226. Flexible progressive systems

Section 227. Conditions affecting efficiency of signal system

Section 228. Manual control

Section 229. Speeds for progressive systems

Section 230. Signs indicating time intervals

Section 231. Coordination with railroad crossing signals

Section 232. Rate of flashing

Section 233. Definition

Section 234. Warrants for intersection control

Section 235. Warrants for nonintersection control

Section 236. Types of traffic-actuated control, and factors governing selection

Section 245. Special evaluation of traffic-actuated signals

Section 246. Full traffic-actuated control

Section 247. Coordinated control

Section 248. Pedestrian-actuated control

Section 249. Speed control

Section 250. One-way restricted zone control

Section 251. Detection and controllers

Section 252. Types of detectors

Section 253. Pressure-sensitive detectors

Section 254. Sound-sensitive detectors

Section 255. Light-sensitive detectors

Section 256. Pedestrian-push-button detectors

Section 257. Types of controllers

Section 258. Two-movement, semi-traffic-actuated controller with time extension

Section 259. Two or more movements, full or semi-traffic-actuated controller with time extension

Section 260. Three-movement, full traffic-actuated controller with time extension

Section 261. Traffic-actuated speed control for nonintersection locations

Section 262. Two-movement, full or semi-traffic-actuated controller with speed control

Section 263. Two-movement, full traffic-actuated controller with automatic adjustments of periods with respect to traffic volume, relative density, and elapsed time

Section 264. Two-phase, full traffic-actuated control for one-way restricted zones

Section 265. Additional flexibility for controllers used in coordinated systems

Section 266. Provision for manual operation

Section 267. Installation of traffic-actuated signals

Section 268. Distance of vehicle detectors from stop line

Section 269. Location of vehicle detectors from center line

Section 270. Installation of pedestrian detectors

Section 271. Installation of streetcar detectors

Section 272. Operation and adjustment of traffic-actuated signals

Section 273. Continuous operation

Section 274. Time intervals and adjustments

Section 275. Interval sequence

Section 276. Rotation of phases

Section 277. Special Pedestrian Signals

Section 278. Definition

Section 279. Warrants

Section 280. Type of control

Section 281. General design requirements

Section 282. Meaning of indications
ILLUSTRATIONS

Figure 1. Height and lateral location of signs—typical installations. 11
Figure 2. Height and lateral location of signs—typical installations 15
Figure 3. Typical locations for stop signs .. 21
Figure 4. Method of locating and determining the length of no-passing zones on vertical and horizontal curves 29
Figure 5. Typical applications of stop signs ... 36
Figure 6. Typical applications of stop signs ... 37
Figure 7. Method for determining degree of curvatures and central angle of horizontal curves .. 40
Figure 8. Typical route markings at intersections (for one direction of travel only) .. 56
Figure 9. Typical route markings at intersections (for one direction of travel only) 59
Figure 10. Typical route markings at intersections (for one direction of travel only) 69
Figure 11. Typical information signs, selected from State highway department manuals .. 73
Figure 12. Stand of projecting marking for no-passing zones on vertical and horizontal curves .. 85
Figure 13. Method of locating and determining the length of no-passing zones on vertical and horizontal curves 89
Figure 14. Typical pavement-width transition markings .. 90
Figure 15. Approach markings for obstructions in the roadway 92
Figure 16. Typical designs for turn markings on pavements 94
Figure 17. Typical urban pavement markings, showing center line, lane lines, stop line, crosswalk lines, parking-space limits, and route markings .. 96
Figure 18. Standard pavement markings at railroad crossings 100
Figure 19. Standard pavement markings at railroad crossings 107
Figure 20. Typical markings on objects in and adjacent to the roadway 109
Figure 21. Design of Institute of Traffic Engineers .. 112
Figure 22. Standards for traffic signal locations .. 116
Figure 23. Typical condition diagram ... 126
Figure 24. Typical collision diagram ... 126
Figure 25. WALK-WAIT lens design, Institute of Traffic Engineers. A typical 159
Figure 26. WALK-WAIT signal installation ... 160
Figure 27. Typical pavement markings with illuminated island with high visibility approach end pavement marking .. 172
Figure 28. A refuge island with low marker lights, arrow, and sign. Pedestrians can cross the street without stepping up on the island extending from a bridge pier. The approach end is signed, striped, and reflectorized 173
Figure 29. Channelizing islands at an intersection, with supplementary signs and markings. Concrete curbs delineate the islands edges .. 175
Figure 30. A raised loading island in a business district, with metal grill platform protected by side rail and metal splash plate. Pedestrians are striped and illuminated .. 176
Figure 31. A raised loading island with highly effective approach end treatment of pavement marking, painted curb, sign, reflector cluster, and reflector lights. This island has no buffer .. 177
Figure 32. Posts and chains provide side protection for this raised loading island. The rounded buffer is striped and illuminated for high visibility .. 178
Figure 33. Protection for this loading island is furnished by heavy metal posts, the center one low enough to allow clear view of the reflectorized cluster. Side protection is provided by posts and chains, set back from the curb. The clean-cut openness of this island permits good visibility 179
Figure 34. A street-level loading island in a business district. The loading area is protected by metal posts with a sheet-metal splash plate, and the pylons are striped and illuminated for high visibility .. 180

Figure 35. — A concrete loading island with end protection provided by rounded concrete buffer. Two alternately flashing lights and an illuminated striped panel warn drivers of approaching vehicles of the island's presence. .. 181
Figure 36. — A raised loading island with protection provided by an illuminated and reflectorized buffer with long sloping prow. .. 182
Figure 37. — Side protection for this loading island is provided by a concrete panel. The high, massive buffer is a sight obstruction, and equal utility and beauty of appearance could have been obtained by a more open design .. 183
Figure 38. — Approach-end treatment to give advance warning of the presence of this loading island consists of high and low reflector clusters, a low-painted curb, a mushroom nose. The overhead signs are illuminated .. 186
Figure 39. — A raised refuge island with buffer and curb striped for high visibility .. 187
Figure 40. — A raised refuge island with buffer and curb striped for high visibility .. 188
Figure 41. — A combination channelizing and refuge islands with high visibility treatment. The cross walk is cut through at pavement level, and pedestrians are well protected from both through and turning vehicles .. 189
Figure 42. — A combination channelizing and refuge islands with high visibility treatment. The cross walk is cut through at pavement level, and pedestrians are well protected from both through and turning vehicles .. 190
Figure 43. — A combination channelizing and refuge islands with high visibility treatment. The cross walk is cut through at pavement level, and pedestrians are well protected from both through and turning vehicles .. 191
Figure 44. — A combination channelizing and refuge islands with high visibility treatment. The cross walk is cut through at pavement level, and pedestrians are well protected from both through and turning vehicles .. 192
Figure 45. — A combination channelizing and refuge islands with high visibility treatment. The cross walk is cut through at pavement level, and pedestrians are well protected from both through and turning vehicles .. 193
Figure 46. — A combination channelizing and refuge islands with high visibility treatment. The cross walk is cut through at pavement level, and pedestrians are well protected from both through and turning vehicles .. 194
Figure 47. — A combination channelizing and refuge islands with high visibility treatment. The cross walk is cut through at pavement level, and pedestrians are well protected from both through and turning vehicles .. 195
Figure 48. — A combination channelizing and refuge islands with high visibility treatment. The cross walk is cut through at pavement level, and pedestrians are well protected from both through and turning vehicles .. 196
Figure 49. — A combination channelizing and refuge islands with high visibility treatment. The cross walk is cut through at pavement level, and pedestrians are well protected from both through and turning vehicles .. 197
Figure 50. — A combination channelizing and refuge islands with high visibility treatment. The cross walk is cut through at pavement level, and pedestrians are well protected from both through and turning vehicles .. 198
Figure 51. — A combination channelizing and refuge islands with high visibility treatment. The cross walk is cut through at pavement level, and pedestrians are well protected from both through and turning vehicles .. 199
Figure 52. — A combination channelizing and refuge islands with high visibility treatment. The cross walk is cut through at pavement level, and pedestrians are well protected from both through and turning vehicles .. 200
Figure 53. — A combination channelizing and refuge islands with high visibility treatment. The cross walk is cut through at pavement level, and pedestrians are well protected from both through and turning vehicles .. 201
Figure 54. — A combination channelizing and refuge islands with high visibility treatment. The cross walk is cut through at pavement level, and pedestrians are well protected from both through and turning vehicles .. 202
Figure 55. — A combination channelizing and refuge islands with high visibility treatment. The cross walk is cut through at pavement level, and pedestrians are well protected from both through and turning vehicles .. 203
INTRODUCTION

Uniformity in traffic laws and regulations was emphatically urged by the President's Highway Safety Conference held in Washington May 9–10, 1946, and is widely recognized as one of the most important objectives in the program to reduce accidents and facilitate the orderly flow of traffic. This Manual on Uniform Traffic Control Devices for Streets and Highways is an essential part of this uniformity plan, and its adoption was specifically recommended by the President's Conference.

Approved legislative standards for States and cities are available in Act V of the Uniform Vehicle Code—the Uniform Act Regulating Traffic on Highways—and in the Model Traffic Ordinance, respectively. Both the Code and the Ordinance require the placing of signs or other traffic control devices to make some of their provisions effective, and both define the legal meaning of certain devices. The Code directs the State authorities to adopt a manual for a uniform system of traffic control devices, and the Ordinance requires devices under municipal jurisdiction to conform thereto.

The Federal-aid Highway Act of 1944 also recognizes the need for approved standards for traffic control devices, and as to highways receiving Federal aid authorizes the Commissioner of Public Roads to require that the devices conform to such standards.

Inasmuch as application of many parts of the manual involves engineering analyses, the counsel of traffic engineers is highly desirable in its use. If such counsel is not available, however, careful attention to the manual recommendations will make it possible to avoid many errors and pitfalls.

This edition of the manual supersedes all previous editions, including the original edition printed in 1935 and reprinted in 1937, mimeographed revisions made in 1939, and the War Emergency Edition issued in 1942. The Joint Committee on Uniform Traffic Control Devices, which has prepared the various editions, was originally made up of representatives of the American Association of State Highway Officials and the National Conference on Street and Highway Safety, but now has an equal number of representatives of each of those two organizations and of the Institute of Traffic Engineers.

This manual recognizes numerous developments in the field of traffic control and new needs resulting from higher traffic speeds since the last previous revision. Noteworthy are the advances in size, illumination, reflectorization, substitution of symbols for words, and other improvements to increase the effectiveness of signs; extension of the use and effectiveness of pavement markings; and developments in

1 The Uniform Vehicle Code and the Model Traffic Ordinance were prepared by the National Conference on Street and Highway Safety as standards for uniform motor-vehicle legislation, and are published by the Public Roads Administration.

2 Since completing its contribution to this manual, the National Conference on Street and Highway Safety has been dissolved and its functions have been vested in the National Committee on Uniform Traffic Laws and Ordinances.
the use and design of islands. Important advances in the use of signals are also recognized, and part III includes discussion of the relative desirability of fixed-time and traffic-actuated signals under various conditions.

The manual contains the best existing judgment on several points on which research is now in progress or being arranged for by qualified agencies. Pending the completion of such research the manual presents alternatives on some points, subject to certain fundamental specifications. Included in this category are certain details of stop signs, no-passing-zone pavement markings, pedestrian signals, and the location and traffic control signals at intersections. In other similar cases the joint committee was able to agree on recommended standards as fully aware that there are differences in opinion and practice among able traffic engineers.

Because such questions, old and new, present a constant need for factual data, the joint committee has set up a continuing subcommittee on research. This subcommittee is to keep abreast of current research in the traffic field and to promote further studies needed for the standardization of traffic control devices. Future revisions of the manual thus can rest firmly on established facts of human behavior as affected by traffic control devices. To the subcommittee on research will be referred all questions that cannot promptly be answered from the experience of committee members or other qualified authorities.

Use and Misuse of Traffic Control Devices

Traffic control devices are increasingly necessary for regulating, warning, and guiding traffic. The details in this manual indicate their wide range and their proper application and operation.

Intersections are the most critical points in traffic control, and a large proportion of the control devices herein relate to intersections. An accurate determination of the degree of control, if any, needed at the intersection is highly important, as is proper selection of the design and operation details to effect that degree of control.

As previously stated, signs are required by law to indicate the applicability of certain traffic regulations. Adequate but not excessive use of warning signs, and sufficient well-designed and well-located route markers and destination signs also have great value in facilitating the orderly flow of traffic, as do well-considered pavement and curb markings and islands properly designed and located. Application of sound principles in the selection, installation, and operation of traffic signals is of the highest importance.

Misapplication of these traffic control devices, however, besides wasting public funds, has in numerous cases accomplished the reverse of the purpose intended, causing delay and confusion and promoting disrespect for and disregard of all control devices. In many communities the responsible authorities have not met problems relating to traffic control devices with scientific analysis but rather by haphazard experiment.

Two fundamental errors have been prevalent: (1) Placing traffic control devices without adequate study of the possible bad effect likely to result either where they are installed or at other points, and (2) in the case of traffic signals, operation in a manner and at times not justified by the conditions. The applicability of traffic control devices in any specific case cannot be determined by guesswork. It should be based on sound engineering principles established by factual studies of types and flow of traffic, accidents, speeds, delays, and physical conditions that will show the exact nature of the difficulty and indicate what particular devices or methods of control are needed. To the extent now believed feasible, this manual sets forth warrants for the different types of traffic control devices.

Responsibility for Selection and Installation

There is wide variation in official responsibility for the selection, installation, and maintenance of traffic control equipment. In many cities the responsibility is placed upon some branch of the police department. In an increasing number of the more progressive cities it is under the direction of a traffic engineer. In a growing number of states, also, broad regulatory authority has been established over the installation and operation of all traffic control devices throughout the state, including small communities and rural areas that otherwise would not have the benefit of expert engineering advice. Thus important progress is being made toward uniformity. The design, installation, and maintenance of traffic control devices on state highways is recognized as being the responsibility of a traffic engineering division in the state highway department.

Until uniform laws replace the present wide variation in state laws regarding signs and signals, some jurisdictions may have to permit deviations from the recommendations of this manual. Fortunately, good progress is being made in bringing about the enactment of the desired uniform laws, and eventually such deviations will be reduced to a minimum.

While considerable equipment now in use does not conform to the standards here set forth, a large part of it can be brought to substantial conformity without excessive cost. Whenever new equipment is purchased or replacements are made because of the need of repairs or because of obsolescence, strict adherence to the standards here set forth should govern the selection.

Definitions applicable throughout the manual follow this introduction. Four general groups of traffic control devices in common use are then treated, as follows: Part I—Signs, part II—Markings, part III—Signals, and part IV—Islands.

Definitions

The following words and phrases, when used in this manual, shall be understood to have the meanings respectively ascribed to them:

1. Relating to the HIGHWAY:

Street or Highway.—The entire width between the boundary lines of every way publicly maintained when any part thereof is open to the use of the public for purposes of vehicular travel.

Roadway.—That portion of a highway improved, designed, or ordinarily used for vehicular travel, exclusive of the berm or shoulder. In the event a highway includes two or more separate roadways the term "roadway" as used herein refers to any such roadway separately but not to all such roadways collectively.

Pavement.—That portion of a roadway having a constructed surface to facilitate vehicular traffic.

Curb Line.—The boundary between a roadway and a sidewalk, usually marked by a fixed curb rising above the level of the roadway.

Sidewalk.—That portion of a street between the curb lines, or the lateral
lines of a roadway, and the adjacent property lines, intended for the use of pedestrians.

Cross Walk.—(a) That part of a roadway at an intersection included within the connections of the lateral lines of the sidewalks on opposite sides of the highway measured from the curbs or, in the absence of curbs, from the edges of the traversable roadway.

(b) Any portion of a roadway, at an intersection or elsewhere, distinctly indicated for pedestrian crossing by lines or other markings on the surface.

Intersection.—(a) The area embraced within the prolongation or connection of the lateral center lines, or, if none, then the lateral boundary lines of the roadways of two highways which join one at another at, or approximately at, right angles; or the area within which vehicles traveling upon different highways joining this area at any other angle may come in conflict.

(b) Where a highway includes two roadways 30 feet or more apart, then every crossing of each roadway of such divided highway by an intersecting highway shall be regarded as a separate intersection. In the event such intersecting highway includes two roadways 30 feet or more apart, then every crossing of two roadways of such highways shall be regarded as a separate intersection.

Center Lane.—A lane of the roadway placed in the center of a roadway on which traffic moves in both directions, or dividing the roadway between traffic moving in opposite directions.

Lanes—A line other than a center line separating two traffic lanes.

Barrier Lane.—A distinctive longitudinal pavement line which, when placed in proper relation to a normal center or lane line, or to another barrier line, indicates that all traffic must keep to the right thereof.

Detecto.—A reflecting device mounted at the side of the roadway, in series, to indicate the alignment of the roadway.

5. Relating to SIGNALS (see also the glossary, appendix A):

Highway Traffic Signal.—Any power-operated traffic control device, except a sign, by which traffic is warned or is directed to take some specific action.

Traffic Control Signal.—A highway traffic signal which, through its indications, alternately directs traffic to stop and permits it to proceed.

Paved-Time Signal.—A traffic control signal which directs traffic to stop and permits it to proceed in accordance with a predetermining time schedule.

Traffic Actuated Signal.—A traffic control signal which directs traffic to stop and permits it to proceed in accordance with the demands of traffic as registered by the actuation of detectors or push buttons.

(a) Semi-Traffic-Actuated Signal.—A type of traffic-actuated signal which provides means for traffic actuation on one or more but not all approaches to the signal location.

(b) Full Traffic-Actuated Signal.—A type of traffic-actuated signal which provides means for traffic actuation on all approaches to the signal location.

(c) Speed-Control Signal.—A type of signal in which means are provided for traffic actuation on some or all approaches and which provides go indications in such a manner that vehicle speeds on one street are limited to a preselected maximum value.

Stop Signal.—A flashing red signal having the same function as a Stop sign.

Caution Signal.—A flashing yellow signal having the same general function as a warning sign.

6. Relating to ISLANDS:

Island.—An area within a roadway from which vehicle traffic is intended to be excluded, together with any area at the approach thereto occupied by protective deflecting or warning devices.

Pedestrian Island.—An island designed for the use and protection of pedestrians. Included are both loading and refuge islands.

Safety Zone.—The area or space officially set apart within a roadway for the exclusive use of pedestrians, and which is protected or is so marked or indicated by adequate signs as to be plainly visible at all times while set apart as a safety zone.

The foregoing definition of a safety zone is that contained in Act V of the Uniform Vehicle Code. A safety zone thus includes only the area intended to be occupied by pedestrians. For the purposes of this manual a pedestrian island includes the safety zone together with the area at the approach end occupied or outlined by protective deflecting or warning devices.

Loading Island.—A pedestrian island at a regular streetcar, bus, or trolley-bus stop especially provided for the protection of passengers.

Refuge Island.—A pedestrian island at or near a cross walk, to aid and protect pedestrians crossing the roadway.

Traffic Island.—An island designed to separate or direct streams of vehicle traffic. Included are both divisional and channelizing islands.

Divisional Island.—A traffic island, usually elongated and narrow, following the centerline of the roadway to separate traffic streams that flow in the same or opposite directions.

Channelizing Island.—A traffic island located to guide traffic streams along certain definite paths and to prevent the promiscuous movement of vehicles in what would otherwise be a widely extended roadway area.

Buffer.—A structure at the approach end of a safety zone designed to deflect or stop any vehicle which collides with it.

Prose.—An elongated extension of a buffer tapered and sloped downwards toward approaching traffic, so that a vehicle mounting it will drag thereon and come to a stop, thereby reducing its speed considerably.

Jiggle Bar.—A series of raised transverse bars placed on the pavement to make any wheel encroachment within the area obvious to a vehicle operator without loss of control of the vehicle.