How to identify partial differential equations.

General Form:

\[A \frac{\partial^2 u}{\partial x^2} + B \frac{\partial^2 u}{\partial x \partial y} + C \frac{\partial^2 u}{\partial y^2} + D = 0 \]

Discriminant: \(B^2 - 4AC \)

- \(< 0 \) Elliptic
- \(= 0 \) Parabolic
- \(> 0 \) Hyperbolic

Example:

The Laplace equation

\[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 \]

Comparing to general form:

- \(\phi = u \)
- \(A = 1 \)
- \(B = 0 \)
- \(C = 1 \)
- \(D = 0 \)
- \(x = x \)
- \(y = y \)

\[B^2 - 4AC = 0 - 4(1)(1) = -4 < 0 \]

\[\therefore \text{Elliptic} \]
EX] **DIFFUSION EQUATION**

\[
\frac{\partial \bar{c}}{\partial t} + u \frac{\partial \bar{c}}{\partial x} = \bar{D} \frac{\partial^2 \bar{c}}{\partial x^2}
\]

\(\bar{D} : \text{DIFFUSION COEFFICIENT} \quad \text{(POSITIVE)}\)

COMPARING TO GENERAL FORM:

\(\bar{c} = u\)

\(A = \bar{D}\)

\(B = 0\)

\(C = 0\)

\(X = x\)

\(y = t\)

EX] **WAVE EQUATION**

\[
\frac{\partial^2 h}{\partial t^2} - \bar{c}^2 \frac{\partial^2 h}{\partial x^2} = 0
\]

\(\bar{c} : \text{SPEED} \quad \text{(POSITIVE)}\)

COMPARING TO GENERAL FORM:

\(u = 1\)

\(A = -\bar{c}^2\)

\(B = 0\)

\(C = 1\)

\(X = x\)

\(y = t\)

\(X = x\)

\(y = t\)

\(\therefore \text{HYPERBOLIC}\)