5.16 The bottom slope \(S = \frac{h}{l} \) (TWS is constant for a,b,c)

a) \(b_0, \ h_0 \) \(S_0 = \frac{h_0}{b_0} \)

b) \(b > b_0, \ h_0 \) \(S_1 = \frac{h_0}{b_1} < S_0 \)

c) \(b_1 > b_0, \ h_1 \) \(S_2 = \frac{h_1}{b_1} = \frac{h_0}{b_0} \rightarrow h_0 = h_0 \frac{b_1}{b_0} \)

which one allows the greatest storm surge?

Using the results given by 'Example 5.3' at Page 159.

\[
\frac{\eta}{l} = \left(1 - \frac{h+1}{h_0}\right) - A \ln \left(\frac{\frac{h+1}{h_0} - A}{1 - A} \right)
\]

where \(A = \frac{n \ TWS \ l}{\rho g \ h_0} \)

Since the greatest surge always occur at \(x = l \) (Beach)

\[
\frac{\eta}{l} = 0 \quad A = \frac{n \ TWS \ l}{\rho g \ h_0}
\]

\[
\frac{\eta}{h_0} = -A \ln \left(\frac{\frac{h_0}{h_0} - A}{1 - A} \right)
\]

a) \[
\eta_a = - \frac{n \ TWS \ h_0}{\rho \ g \ h_0} \cdot \ln \left(\frac{\eta_a}{h_0} - \frac{n \ TWS \ h_0}{\rho \ g \ h_0} \right)
\]

b) \[
\eta_b = - \frac{n \ TWS \ l_1}{\rho \ a \ l_1} \cdot \ln \left(\frac{\eta_b}{l_1} - \frac{n \ TWS \ l_1}{\rho \ a \ l_1} \right)
\]
c) \[\eta_c = - \frac{n \tau_w \xi}{\rho g \eta} \times \left(\frac{\eta_c - \frac{n \tau_w \xi}{\rho g \eta_i}}{\eta_i - \frac{n \tau_w \xi}{\rho g \eta}} \right) \]

Noticing \(\frac{\eta_i}{\eta} = \frac{\eta_0}{\eta_0} \),

\[\eta_c = - \frac{n \tau_w \xi}{\rho g \eta} \times \left(\frac{\eta_c - \frac{n \tau_w \xi}{\rho g \eta_0}}{\eta_i - \frac{n \tau_w \xi}{\rho g \eta_0}} \right) \]

Comparing Eq. 1 with 3, their right-hand sides are the same except \(\eta_i \). Since \(\eta_i > \eta_0 \), then \(\eta_c > \eta_a \).

This result is expected, for larger \(\eta_i (\xi > \xi_0) \), the wind shear force is bigger.

Comparing Eq. 2 with 1, notice \(\frac{\eta_i}{\eta_0} > \frac{\xi}{\xi_0} \), then we expect \(\eta_b > \eta_c \) (due to smaller slope leads larger \(\eta \) for the same depth \(\eta_0 \)).

Verify:

a) \(A_a = 0.05 \), \(\xi_0, \eta_0 \) using Figure 5.12 \(\eta_a = 0.128 \eta_0 \)

b) \(A_b = 5A_a = 0.25 \), \(5\xi_0, \eta_0 \)

c) \(A_c = \frac{A_a}{5} = 0.01 \), \(5\xi_0, 5\eta_0 \)

Since \(A_b > A_a \), we can find \(\eta_b/\eta_0 \) according to Figure 5.12. Using iteration, \(\eta_b = 0.4 \eta_0 \).

Then \(\eta_b > \eta_c > \eta_a \). It is verified.
5.17. \[h = h_0 \left(1 - \frac{\eta}{\tau_s} \right)^2 \]

\[\eta(x) = \sqrt{h^2 + \frac{2\pi\tau_s x}{\rho g}} - h \]

Steady state:

\[(h + \eta) \frac{\partial \eta}{\partial x} = \frac{\pi \tau_s}{\rho g} \]

Proof:

\[h + \eta = \sqrt{h^2 + \frac{2\pi\tau_s x}{\rho g}} \]

\[\frac{\partial \eta}{\partial x} = \frac{\frac{\partial h}{\partial x} + \frac{\pi \tau_s}{\rho g}}{\sqrt{h^2 + \frac{2\pi\tau_s x}{\rho g}}} = \frac{\partial h}{\partial x} \]

\[L.H.S. = (h + \eta) \frac{\partial \eta}{\partial x} = h \frac{\partial h}{\partial x} + \frac{\pi \tau_s}{\rho g} - (h + \eta) \frac{\partial h}{\partial x} \]

\[= \frac{\pi \tau_s}{\rho g} - \eta \frac{\partial h}{\partial x} = \frac{\pi \tau_s}{\rho g} \]

If \(\eta \frac{\partial h}{\partial x} \approx \frac{\pi \tau_s}{\rho g} \)

This is proved.

Comments on \(h \frac{\partial h}{\partial x} - (h + \eta) \frac{\partial \eta}{\partial x} = 0 \).

1. For \(h \) is large (near \(x = 0 \)), \(\eta \) is small, \(\eta \frac{\partial \eta}{\partial x} \approx 0 \).

2. For \(\eta \) is large, \(\frac{\partial h}{\partial x} = -2\frac{h_0}{\tau_s} (1 - \frac{x}{\ell}) \left(1 - \frac{x}{\ell} \right) = 0 \) (near the beach).
5.17 \[h = h_0 (1 - \frac{x}{L})^4 \]

parabolic slope

and \[h = h_0 (1 - \frac{x}{L}) \]

hot slope

\[a) \ \eta (x = 0) = \sqrt{\frac{h}{g} + \frac{2 \eta L w x}{\rho g}} \]

b) \[\eta \] can be determined from Eq. (5.99b)

Check Figure 5.12.

For \[A = 0.01 \]

\[\eta_0 = 0.03 \ h_0 \]

\[\eta_a = 0.141 \ h_0 \]

\[\eta_a > \eta_0 \]

For \[A = 0.05 \]

\[\eta_0 = 0.13 \ h_0 \]

\[\eta_a = 0.316 \ h_0 \]

\[\eta_a > \eta_0 \]

With the same \[h_0 \], \[\eta_0 \]. The surge for the parabolic slope beach is usually longer than sloping (flat) beach.
Storm Surge: Parabolic and Linear Bottoms

- Linear (q = 0.05)
- Linear (q = 0.1)
- Parabolic (q = 0.05)
- Parabolic (q = 0.1)