Use the "intuitive" method of joints to calculate the force in each member of the truss shown.

Draw FBD of total truss

\[M_A = 0 \]
\[E_x = 400 \text{ lb} \rightarrow \text{as shown} \]
\[+ \Rightarrow \sum F_x = 0 \quad \Rightarrow \quad 400 \]
\[A_x + F_x = 0 \]

(3)

(4) \[A_x = 400 \text{ lb} \quad \text{as shown} \]

\[+ \Rightarrow \sum F_y = 0 \]
\[A_y - 200 = 0 \]

(5) \[A_y = 200 \text{ lb} \quad \text{as shown} \]

(6)

Start with joint A because it only has 2 unknowns.

(7) \[\sum F_x = 0 \quad \Rightarrow -400 + F_{AB} = 0 \quad F_{AB} = 400 \text{ lb T} \]

(8) \[\sum F_y = 0 \quad \Rightarrow 200 - F_{AE} = 0 \quad F_{AE} = 200 \text{ lb T} \]

(9)

Move to joint E because it now only has 2 unknowns.

No Part or portion of this page may be copied, transmitted or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.
(17) \[F_{AE} + 0.707 F_{EB} = \frac{1}{4} \text{lb} \]

(18) \[F_{EB} = 282.9 \text{lb} \text{ or } \frac{282.9}{lb} C \]

(19) \[400 + F_{ED} + 0.707 F_{EB} = 0 \]

(20) \[F_{ED} = 200 \text{ lb} \text{ or } \frac{200}{lb} C \]

Move to joint D because it now has only 2 unknowns.

(21) \[F_{DB} \]

(22) \[\Rightarrow \sum F_y = 0 \]

\[F_{DB} = 0 \text{ or } \frac{0}{lb} \]

\[F_{DC} = 200 \text{ lb} \text{ or } \frac{200}{lb} C \]
Move to joint C to calculate the last unknown

\[\frac{F_{CB}}{707 F_{CB}} + \frac{1}{2} F_y = 0 \]

\[0.707 F_{CB} = 200 = 0 \]

\[F_{CB} = 282.9 \text{ lb} \]

Check

\[+ \quad \leq F_x = 0 + 200 = 200 \]

\[- F_{DC} - 0.707 F_{CB} = 0 \]

\[0 = 0 \quad OK \]

Move to joint B to finish check

\[F_{AB} \]

\[+ \quad \leq F_y = 0 + 282.9 = 0 \]

\[- 0.707 F_{EB} - F_{DB} - 0.707 F_{CB} = 0 \]

\[0 = 0 \quad OK \]
\[F_x = 0 \Rightarrow -F_{AB} - 1.707F_{EB} + 1.707F_{EB} = 0 \]

\[0 = 0 \]

\[\text{Summary} \]

\[400 \text{ lb} \]

\[200 \text{ lb} \]