A steel bar is suspended from the ceiling of a structure. The cross-sectional area of the bar is 5 in². There is a 1000 lb force applied at the bottom end of the bar as shown. Assume that the modulus of elasticity of steel is equal to 30×10^6 psi, and that it has a unit weight of $490 \frac{lb}{ft^3}$.

Calculate the maximum deflection at B.

First it is necessary to develop an expression that gives the internal force as a function of position x measured from the bottom of the bar.
W. Lynn Beason, Ph.D., P.E.
Mechanics of Solids

\[W = (x)(5)(.2836) \]
\[W = 1.418x \text{ lb} \]
where \(x \) is in inches

\[P = 1000 + 1.418x \]

The total deflection is then given as:

\[\delta = \int_{0}^{360} \frac{P(x)}{AE} \, dx \]

\[\delta = \frac{1}{AE} \int_{0}^{360} (1000 + 1.418x) \, dx \]

\[\delta = \frac{1}{AE} \left[1000x + \frac{1.418x^2}{2} \right]_{0}^{360} \]
\[S_{AB} = \frac{1}{AE} \left[360000 + 91,886 \right] \]
\[S_{AB} = \frac{451,886}{\left(5\right)\left(30 \times 10^6\right)} \]
\[S_{AB} = 3.01 \times 10^{-1} \text{ in} \]

The normal stress at any point \(x \) is given as follows:

\[\sigma(x) = \frac{1000 + 1.918x}{5 \text{ in}^2} \]
\[\sigma(x) = 200 + 283.6x \frac{16}{\text{in}^2} \]

The maximum stress occurs at point \(A \) where \(x \) will be equal to 360 in.

\[\sigma_{\text{max}} = 200 + 283.6 \left(360\right) \]
\[\sigma_{\text{max}} = 302.1 \frac{16}{\text{in}^2} \]