Gear Interaction

\[\phi_C = f(\phi_B) \]

\[\phi_B = \phi_A + \phi_{AB} \]

\[\phi_D = \phi_C + \phi_{CD} \]
The diagram shows a mechanical problem involving a force and moment. The problem is solved using the equations:

\[M_{x-\text{axis}} = 0 \]

\[1000 - F(0.040) = 0 \]

\[F = 25000 \text{ N} \]

\[M_{x-\text{axis}} = 0 \]

\[T_A - 25000(1.100) = 0 \]

\[T_A = 2500 \text{ N-m} \]

\[T_B = \frac{F}{0.040} \quad T_C = 2.5T_C \]

All original material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2015. No Part or portion of this material may be copied, transmitted or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.
\[T_{\text{big}} = F \frac{r_{\text{big}}}{r_{\text{big}}} \]
\[T_{\text{big}} = F \frac{r_{\text{big}}}{r_{\text{little}}} \quad \text{or} \quad T_{\text{little}} = \frac{r_{\text{little}}}{r_{\text{big}}} T_{\text{big}} \]

\[T_{\text{little}} = F \frac{r_{\text{little}}}{r_{\text{little}}} \]

All original material presented in this video or image was created by W. Lynn Beason, Ph.D., PE. and is copyrighted 2015. No Part or portion of this material may be copied, transmitted or otherwise used without the express written consent of W. Lynn Beason, Ph.D., PE.
Big Gear \(r_{\text{big}} \) Little Gear \(r_{\text{little}} \)

\[
\phi_{\text{big}} \cdot r_{\text{big}} = \phi_{\text{little}} \cdot r_{\text{little}}
\]

\[
\phi_{\text{big}} = \frac{r_{\text{little}}}{r_{\text{big}}} \cdot \phi_{\text{little}} \quad \text{or} \quad \phi_{\text{little}} = \frac{r_{\text{big}}}{r_{\text{little}}} \cdot \phi_{\text{big}}
\]