Stability Issue

Linear Spring Constant

F = k \Delta

Rotational Spring

M = k \Delta \theta

No Part or portion of this material may be copied, transmitted or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.
Column Buckling

Not Rigid

All original material presented in this video or image was created by W. Lynn Beason, Ph.D., PE. and is copyrighted 2015. No Part or portion of this material may be copied, transmitted or otherwise used without the express written consent of W. Lynn Beason, Ph.D., PE.
\begin{align*}
\Delta \leq M_{\text{hinge}} &= 0 \\
P \sin \Delta \theta \left(\frac{L}{2} \right) - M_{\text{spring}} &= 0 \\
\frac{P}{2} L \sin \Delta \theta &= M_{\text{spring}} \\
\frac{P}{2} L \sin \Delta \theta &= \kappa_{\text{rot}} \Delta \theta
\end{align*}
For Small Angles

\[
\frac{PL}{2} \sin \Delta \theta = K_{\text{rot}} \Delta \theta
\]

\[
\Delta \theta \approx \sin \Delta \theta = \tan \Delta \theta
\]

\[
\frac{PL}{2} \Delta \theta = K_{\text{rot}} \Delta \theta
\]

\[
P = \frac{4K_{\text{rot}}}{L}
\]

Assumes Equilibrium
Stable
Neutral
Unstable
E quilibri u m
E quilibrium
E quilibrium

All original material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2015. No Part or portion of this material may be copied, transmitted or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.
Column Buckling

\[D \leq M_{cut} = 0 \]
\[M + P_y = 0 \]
\[M = -P_y \]

All original material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2015. No Part or portion of this material may be copied, transmitted or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.
\[EI \frac{d^2 y}{dx^2} = M \]
\[EI \frac{d^2 y}{dx^2} = -Py \]
\[\frac{d^2 y}{dx^2} + \left(\frac{Py}{EI} \right) = 0 \]

Capital \[P \] - load

\[Z = \frac{P}{EI} \]

Little \[P \]

\[\frac{d^2 y}{dx^2} + P \cdot y = 0 \]

Linear, homogeneous, 2nd order differential equation with constant coefficients

All original material presented in this video or image was created by W. Lynn Beason, Ph.D., PE. and is copyrighted 2015. No Part or portion of this material may be copied, transmitted or otherwise used without the express written consent of W. Lynn Beason, Ph.D., PE.
General Solution

\[y = A \sin px + B \cos px \]

1. \(x = 0 \), \(y = 0 \)

 \[0 = A \sin 0 + B \cos 0 \]

 \[B = 0 \]

2. \(x = L \), \(y = 0 \)

 \[0 = A \sin pL \]

 \[\sin pL = 0 \]

 \[pL = n \pi \]

 \[pL = n \pi \quad n = 1, 2, 3, \ldots \]
Column Buckling

\[P L = \pi^2 \left(\frac{EI}{L^2} \right) \]

1, 2, 3, ...

\[P = \frac{(n\pi)^2 EI}{L^2} \]

\[P_{cr} = \frac{n^2 \pi^2 EI}{L^2} \]

Euler's Buckling Equation