A horizontal beam ABC is pin-supported at A and carries a load Q at end C as shown. The beam is supported at B by a round steel column with a diameter of 4 in. The modulus of elasticity of the steel is 30×10^6 psi and the yield strength is 40,000 psi. What is the maximum load that may be applied to point C if there is to be a factor of safety 2.0 against failure of the column by yielding or buckling.

First we will determine the maximum allowable compressive load on the column.

Check yielding criteria

\[A_{\text{column}} = \pi \left(\frac{d}{2} \right)^2 = 12.57 \text{ in}^2 \]
\[P_{\text{allow}} = \frac{\sqrt{\text{yield}}}{F \cdot L} \]

\[P_{\text{allow}} = \frac{4,000 \text{ psi}}{2} \]

\[P_{\text{allow}} = 20,000 \text{ psi} \]

\[P_{\text{allow}} = (20,000 \text{ psi})(12.57 \text{ in}^2) \]

\[P_{\text{allow}} = 251,400 \text{ lb} \]

Check Buckling Criteria

\[I = \frac{\pi}{2} r^4 \]

\[I = \frac{\pi}{2} (2)^4 \]

\[I = 12.57 \text{ in}^4 \]

It is just a coincidence that \(I = A \). Usually this will not happen.
\begin{align*}
(11) \quad P_{cr} &= \frac{\pi^2 \cdot E \cdot I}{L^2} \\
(12) \quad P_{cr} &= \frac{\pi^2 (30 \times 10^6 \cdot \frac{ft^2}{in^4}) \cdot 12.57 \cdot in^4}{(84)^2} \\
(13) \quad P_{cr} &= 527,470 \text{ lb} \\
(14) \quad P_{allow} &= \frac{P_{cr}}{F_iS} \\
(15) \quad P_{allow} &= \frac{527,470}{2} \\
(16) \quad P_{allow} &= 263,735 \text{ lb}
\end{align*}

Since 251,400 lb < 263,735 lb then failure by yielding controls.

Hence the maximum allowable compressive load or the column is 251,400 lb.

To determine the maximum allowable load \(Q \) that can be applied to the system it is necessary to examine a F.E.D at A.E.
\[M_A = 0 \]

\[+ (251,400 \text{ lb})(3 \text{ ft}) - \frac{Q_{\text{Allow}}}{(8 \text{ ft})} = 0 \]

\[Q_{\text{Allow}} = 94,275 \text{ lb} \]