Uniform Stress in Pinned Axial Member in Tension

Nominal Stress Away from the holes

\[\sigma_{\text{avg}} = \frac{P}{A} = \frac{P}{ht} \]
Pinned Axial Member

\[A_{\text{Reduced}} = (h-d)(t) \]

\[\text{LAVG}_{\text{hole}} = \frac{P}{t(h-d)} \]
All original material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2015. No Part or portion of this material may be copied, transmitted or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.
Projected Area = $\frac{P}{dt}$

$\int_{Bearing \, Ave} \frac{p}{d^t}$
Uniform Stress in Pinned Axial Member in Compression

No Increased Normal Stress at the Hole

No Tear Out Shearing Stress at the Hole

Nominal Stress
\[\sigma_{\text{avg}} = \frac{P}{A} \]

Bearing Stress
\[\sigma_{\text{bearing}} = \frac{P}{A_{\text{bearing}}} \]

All original material presented in this video or image was created by W. Lynn Beason, Ph.D., PE. and is copyrighted 2015. No Part or portion of this material may be copied, transmitted or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.