Determine the normal and shear stresses acting on plane A-A of the point shown.

Use the Mohr’s Circle approach.

Determine the proper signs of τ_x, τ_y, and τ_{xy}

$\tau_x = 2$
$\tau_y = -5$
$\tau_{xy} = -6$

Determine the center of the circle

\[\tau_{center} = \frac{\tau_x + \tau_y}{2} \]

\[\tau_{center} = \frac{2 + (-5)}{2} = -1.5 \]
Determine the radius of the circle

(3) \[R = \sqrt{\left(\frac{1}{2}\right)^2 + \frac{1}{2}^2} \]

(4) \[R = \sqrt{\left(\frac{2-1}{2}\right)^2 + \left(-\frac{1}{2}\right)^2} \]

(5) Construct Circle

\(R = 6.146 \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)

\((1.5, 6) \)
To locate plane A-A on the block you can rotate 36.87° CCW from the vertical plane or 53.13° CW from the horizontal plane. So on the circle you rotate 2 x 36.87° CCW from plane 1 (vertical plane) or you rotate 2 x 53.13° CW from plane 2 (horizontal plane). The location of plane A-A is shown on the circle.

Then the magnitudes TA-A and TA-A are determined using simple geometry.
<table>
<thead>
<tr>
<th>No.</th>
<th>Equation/Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$T_{AA} = \sin 46.51^\circ \cdot R$</td>
</tr>
<tr>
<td>7</td>
<td>$T_{AA} = 5.1039$</td>
</tr>
<tr>
<td>8</td>
<td>and $T_{AA} = \sqrt{C_{xx} - \cos 46.51^\circ} \cdot R$</td>
</tr>
<tr>
<td>9</td>
<td>$\sqrt{T_{AA} = -1.5 - \cos 46.51^\circ \cdot 6.946}$</td>
</tr>
<tr>
<td>10</td>
<td>$\sqrt{T_{AA} = -6.28}$</td>
</tr>
</tbody>
</table>

Then using conceptual geometry:

Study the complete Mohr's circle to calculate θ_{AA}

$\theta_{AA} = 180^\circ - 73.79^\circ - 57.75^\circ$

$\theta_{AA} = 46.51^\circ$ Center

(-1.5, 0)
Finally, we show the results on a properly oriented sketch

No Part or portion of this page may be copied, transmitted or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.