An inverted T-beam is loaded as shown. The cross-section of the beam is as shown. Determine the maximum tensile flexural stress in the beam and the maximum compressive flexural stress in the beam and indicate their respective locations.

Calculate Reactions

1. \(\sum M_A = 0 \)
\[
-625 \times 4 + C_y \times 8 = 0
\]
\[C_y = 83.75 \text{ lb} \] as shown

2. \(\sum F_y = 0 \)
\[C_y = 83.75 \text{ lb} \] as shown

3. \(A_y - 625 - 400 + C_y = 0 \)
\[A_y = 187.5 \text{ lb} \] as shown

4. \(\sum F_x = 0 \)
\[A_x = 0 \]
Draw shear and bending moment diagrams

\[b = 5 \text{ in} \]

\[187.5 \text{ lb} \]

\[87.5 \text{ lb} \]

\[1.4 \text{ in} \]

\[4.1 \text{ in} \]

\[5 \text{ in} \]

\[\frac{14}{400} (4) = 750 \]

\[\frac{14}{400} (5) = 1000 \]

\[4.375 \text{ in} \]

\[-4.375 (4) = -1750 \]

\[750 \text{ ft-lb} \]

\[1000 \text{ ft-lb} \]

\[\text{Max Positive Moment} = (750 \text{ ft-lb}) \left(\frac{12}{14} \right) = 7200 \text{ in-lb} \]

\[\text{Max Negative Moment} = (-1000 \text{ ft-lb}) \left(\frac{12}{400} \right) = -12000 \text{ in-lb} \]
Calculate Cross-Section Properties

\[1.5'' \]

\[2.5'' \]

Red Axis

\[\bar{y} = 1'' \]

\[\bar{y} = \frac{(1.5)(2.5)\left(\frac{2.5}{2} + 1.5\right) + (2.5)(1.5)(\frac{1.5}{2})}{(1.5)(2.5) + (2.5)(1.5)} \]

\[\bar{y} = \frac{1}{11} \text{ in} \]

\[I = \frac{1}{12} \left(\frac{1}{2} (2.5)^2 \right) \left(\frac{2.5}{2} + 1.5 - 1 \right) + \frac{1}{12} \left(2.5 \right)^2 + (2.5)(1.5)(1 - \frac{2}{3}) \]

\[I = 1.651 + 1.703 + .026 + .703 \]

\[I = 2.083 \text{ in}^4 \]

Calculate Maximum Stresses \(q + P \)

\[\n = -\frac{M_y}{I} \]
<table>
<thead>
<tr>
<th>Step</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>(-\frac{3,000 \text{ in-lb} \times 2 \text{ in}}{2,083 \text{ in}^4})</td>
</tr>
<tr>
<td>(3)</td>
<td>(-\frac{9,000 \times (-1 \text{ in})}{2,083 \text{ in}^4})</td>
</tr>
<tr>
<td>(4)</td>
<td>(\frac{8,641 \text{ psi}}{}) Compression</td>
</tr>
<tr>
<td>(5)</td>
<td>(\frac{7,432 \text{ psi}}{}) Tension</td>
</tr>
</tbody>
</table>

Calculate Maximum Stress at C

<table>
<thead>
<tr>
<th>Step</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6)</td>
<td>(-\frac{-12,000 \text{ in-lb} \times 2 \text{ in}}{2,083 \text{ in}^4})</td>
</tr>
<tr>
<td>(7)</td>
<td>(\frac{11,522 \text{ psi}}{}) Tension</td>
</tr>
<tr>
<td>(8)</td>
<td>(-\frac{-12,000 \times (-1 \text{ in})}{2,083 \text{ in}^4})</td>
</tr>
<tr>
<td>(9)</td>
<td>(-5,761 \text{ psi}) Compression</td>
</tr>
</tbody>
</table>

The maximum tensile stress occurs at point C on the top of the section.

\(\sigma_{C_{\text{Top}}} = 11,522 \text{ psi}\) Tension

The maximum compressive stress occurs at point B on the top of the section.

\(\sigma_{B_{\text{Top}}} = -5,761 \text{ psi}\) Compression