General examination rules:

1) Do not put your completed work anywhere that it can be seen. If any part of your work can be seen by others it will be confiscated and you will not be permitted to rework those problems. **Place your existing work face down on your desk under your existing work.**
2) Do not un staple this exam.
3) Do not write where I cannot grade. If you write on the top left 1/16” corner of the page and then staple your papers 2” down and to the right, none of your inaccessible work above the staple will be graded. Bringing the paper back after grading and showing me the work I could not access will not change your grade.
4) Please remove your hat. If it is part of your head, turn it around backwards.
5) If your work is illegible, or if I cannot follow your logic at a glance, it will receive no credit. This paper must be written to acceptable engineering standards for credit.
6) Each problem has the same value.
7) You may work on your own paper or you may use paper supplied at the front of the room.

Ethical Standards:

Upon accepting admission to Texas A&M University, a student immediately assumes a commitment to uphold the Honor Code, to accept responsibility for learning, and to follow the philosophy and rules of the Honor System. Students will be required to state their commitment on examinations, research papers, and other academic work. Ignorance of the rules does not exclude any member of the TAMU community from the requirements or the processes of the Honor System.

"On my honor, as an Aggie, I have neither given nor received unauthorized aid on this exam."

Signature of student

Please do not open this exam until you are told to do so.
Table 5-1 Centroid Locations for a Few Common Line Segments and Areas

<table>
<thead>
<tr>
<th>Segment</th>
<th>Formula for Length</th>
<th>Formula for Centroid</th>
<th>Formula for Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular arc</td>
<td>$L = 2\pi \alpha$</td>
<td>$x_c = \frac{r \sin \alpha}{\alpha}$</td>
<td>$A = \pi r^2 \alpha$</td>
</tr>
<tr>
<td></td>
<td>$x_c = 0$</td>
<td>$y_c = 0$</td>
<td></td>
</tr>
<tr>
<td>Quarter circular arc</td>
<td>$L = \frac{\pi r}{2}$</td>
<td>$x_c = \frac{2r}{\pi}$</td>
<td>$A = \frac{\pi r^2}{4}$</td>
</tr>
<tr>
<td></td>
<td>$y_c = \frac{2r}{\pi}$</td>
<td>$x_c = 4r$</td>
<td>$y_c = \frac{4r}{3\pi}$</td>
</tr>
<tr>
<td>Semicircular arc</td>
<td>$L = \pi r$</td>
<td>$x_c = r$</td>
<td>$A = \frac{\pi r^2}{2}$</td>
</tr>
<tr>
<td></td>
<td>$y_c = \frac{2r}{\pi}$</td>
<td>$y_c = \frac{4r}{3\pi}$</td>
<td></td>
</tr>
<tr>
<td>Rectangular area</td>
<td>$A = bh$</td>
<td>$x_c = \frac{b}{2}$</td>
<td>$A = \frac{mb}{4}$</td>
</tr>
<tr>
<td></td>
<td>$y_c = \frac{h}{2}$</td>
<td>$x_c = \frac{4a}{3\pi}$</td>
<td>$y_c = \frac{4b}{3\pi}$</td>
</tr>
<tr>
<td>Triangular area</td>
<td>$A = \frac{bh}{2}$</td>
<td>$x_c = \frac{2b}{3}$</td>
<td>$A = \frac{bh}{3}$</td>
</tr>
<tr>
<td></td>
<td>$y_c = \frac{h}{3}$</td>
<td>$x_c = \frac{3b}{4}$</td>
<td>$y_c = \frac{2h}{10}$</td>
</tr>
<tr>
<td>Triangular area</td>
<td>$A = \frac{bh}{2}$</td>
<td>$x_c = \frac{a + b}{3}$</td>
<td>$A = \frac{2bh}{3}$</td>
</tr>
<tr>
<td></td>
<td>$y_c = \frac{h}{3}$</td>
<td>$x_c = \frac{5b}{8}$</td>
<td>$y_c = \frac{2h}{5}$</td>
</tr>
</tbody>
</table>
Problem 1) Locate the centroid (neutral x-x axis) for the shape shown below. Use y1=2", y2=6", y3=10", y4=3", y5=2", x1=x3=2", x2=6".

\[\bar{x} = 5 \text{ by symmetry} \]

Rectangle centroid: \(\bar{y} = \left(\frac{2+3+10+6+2}{2} \right) = \left(\frac{23}{2} \right) = 11.5 \)

Circle centroid: \(\bar{y} = \left(2+3+10+\frac{\pi}{2} \right) = (15+\frac{\pi}{2}) = 18 \)

Semicircle centroid: \(\bar{y} = \left(2 + \frac{\frac{\pi}{2}}{3\pi} \right) = \left(2 + \frac{\frac{\pi}{6}}{3\pi} \right) = \left(2 + \frac{\pi}{18} \right) = 3.27 \)

A rectangle = \((10)(23) = 230 \)
A circle = \(- (\pi r^2) = -9\pi = 28.27 \)
A semicircle = \(- (\pi r^2) = -4.5\pi = 14.14 \)

\[\bar{y} = \frac{A_1y_1 + A_2y_2 + A_3y_3}{A_1 + A_2 + A_3} = \frac{(230)(\frac{23}{2}) - (9\pi)(18) - (4.5\pi)(2 + \frac{\pi}{2})}{230 - 9\pi - 4.5\pi} \]

\[\bar{y} = \frac{2089.79}{187.59} = 11.41 \]

\[
\text{centroid} = (5, 11.41) \\
\text{neutral axis } x = 11.14
\]
Problem 2) Solve for the reactions for the structure loaded as shown. Note – nothing on the drawing is to scale for your numbers. The distributed load shown is elliptical, and \(w = 2 \text{kN/m} \). \(M = 50 \text{kNm} \), \(x_1 = 6 \text{m} \), \(x_2 = 5 \text{m} \), \(x_3 = 4 \text{m} \).

\[
P = \frac{\pi (6 \text{m}) (2 \text{kN/m})}{4} = 9.425 \text{kN}
\]

\[
x_4 = \frac{4a}{3\pi} = \frac{4(6\text{m})}{3\pi} = 2.546 \text{m}
\]

\[
x_5 = 6\text{m} - 2.546 \text{m} = 3.454 \text{m}
\]

\[
y_j = \tan 50^\circ \quad \Rightarrow \quad y_j = x_2 \tan 50^\circ
\]

\[
x_2 = 5\tan 50^\circ = 5.959 \text{m}
\]

\[
\Sigma M_A = 0 = (9.425 \text{k})(3.454 \text{m} + 9 \text{m}) + 50 - R_{BH}(5.959 \text{m})
\]

\[
R_{BH} = 28.09 \text{kN}
\]

\[
\Sigma F_H = 0 = A_H - 28.09 \text{kN}
\]

\[
A_H = 28.09 \text{kN}
\]

\[
\Sigma F_V = 0 = -9.425 + A_V
\]

\[
A_V = 9.425 \text{kN}
\]
Problem 3) Solve for the volume generated by rotating the shape shown about the y-y axis, and the total surface area generated. In other words, solve for the total volume of the shape so I can buy enough steel to make it, and solve for the surface area so I can buy enough paint to paint it. Use x1 = 6", x2 = 5" and x3=4", y1=8", y2=3."

\[A_1 = 8(5) = 40 \text{ in}^2 \]

\[y_{C1} = 8 + \frac{5}{2} = 8.5 \text{ in} \]

\[V_1 = 40(2\pi(8.5)) = 680\pi \]

\[A_2 = \frac{1}{2}(5)(3) = 7.5 \text{ in}^2 \]

\[y_{C2} = 6 + \left(\frac{9+5}{3}\right) = 10.67 \text{ in} \]

\[V_2 = 7.5(2\pi(10.67)) = 160\pi \]

\[V_{total} = 680\pi + 160\pi = 840\pi \Rightarrow V_{total} = 2638.94 \text{ in}^3 \]

\[SA_1 = 8(2\pi)(6) + 8(2\pi)(11) + 5(2\pi)(6 + \frac{5}{2}) + \sqrt{9^2 + 3^2}(2\pi)(6 + \frac{9}{2}) + \]

\[+ \sqrt{9^2 + 3^2}(2\pi)(11 + \frac{4}{2}) = 301.6 + 557.92 + 207.04 + 1625.88 + 408.41 \]

\[SA_{total} = 2155.85 \text{ in}^2 \]

\[\text{Good.} \]
Problem 4) A set of forces has been determined to cause a total moment about point B equal to 100i - 200j + 400k. Determine the scalar component of the moment about the CB axis.

\[
\begin{align*}
\vec{e} &= \frac{7\hat{i} - 4\hat{j} - 5\hat{k}}{\sqrt{7^2 + (-4)^2 + (-5)^2}} = \frac{7\hat{i} - 4\hat{j} - 5\hat{k}}{9.487} \\
&= +0.738\hat{i} - 0.422\hat{j} - 0.527\hat{k}
\end{align*}
\]

\[
|M| = \vec{M} \cdot \vec{e}
\begin{align*}
&= \left[100\hat{i} - 200\hat{j} + 400\hat{k}\right] \cdot \left[0.738\hat{i} - 0.422\hat{j} - 0.527\hat{k}\right] \\
&= -52.6
\end{align*}
\]
Problem 5) Determine the vertical and horizontal components for the reaction at C. The bar has a total mass of 500kg, and x1 = 2m, x2 = 10m, x3 = 4m.

\[\Sigma M_C = 0 = \frac{12}{13}T(14) + 4905(8) - \frac{3}{5}T(4m) \]

\[= -12.92T + 39240 - 2.4T \]

\[15.32T = 39240 \]

\[T = 2561 \text{ N} \]

\[\Sigma F_v = 0 = \frac{12}{13}(2561) - 4905 + \frac{3}{5}(2561) + C_v \]

\[C_v = 4905 - 2364 - 1537 \]

\[= 1004 \text{ N} \]

\[\Sigma F_h = 0 = \frac{5}{13}(2561) - \frac{4}{5}(2561) + C_h \]

\[C_h = 1064 \text{ N} \]
Problem 6) Determine the load P required to lift the uniform load w = 200 #/ft. Use x1 = 4 ft, x2 = 6 ft.

\[\Sigma M_A = 0 = 4P(4) + P(8) + P(12) - 1200(21) \]

\[P = 700 \]
General examination rules:

1) Do not put your completed work anywhere that it can be seen. If any part of your work can be seen by others it will be confiscated and you will not be permitted to rework those problems. Place your existing work face down on your desk under your existing work.

2) Do not unstaple this exam.

3) Do not write where I cannot grade. If you write on the top left 1/16” corner of the page and then staple your papers 2” down and to the right, none of your inaccessible work above the staple will be graded. Bringing the paper back after grading and showing me the work I could not access will not change your grade.

4) Please remove your hat. If it is part of your head, turn it around backwards.

5) If your work is illegible, or if I cannot follow your logic at a glance, it will receive no credit. This paper must be written to acceptable engineering standards for credit.

6) Each problem has the same value.

7) You may work on your own paper or you may use paper supplied at the front of the room.

Ethical Standards:

Upon accepting admission to Texas A&M University, a student immediately assumes a commitment to uphold the Honor Code, to accept responsibility for learning, and to follow the philosophy and rules of the Honor System. Students will be required to state their commitment on examinations, research papers, and other academic work. Ignorance of the rules does not exclude any member of the TAMU community from the requirements or the processes of the Honor System.

"On my honor, as an Aggie, I have neither given nor received unauthorized aid on this exam."

__
Signature of student

Please do not open this exam until you are told to do so.

[Signature of student]
Table 5-1: Centroid Locations for a Few Common Line Segments and Areas

<table>
<thead>
<tr>
<th>Shape</th>
<th>Formula</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular arc</td>
<td>$L = 2r\alpha$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x_C = \frac{r \sin \alpha}{\alpha}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$y_C = 0$</td>
<td></td>
</tr>
<tr>
<td>Circular sector</td>
<td>$A = r^2\alpha$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x_C = \frac{2r \sin \alpha}{3\alpha}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$y_C = 0$</td>
<td></td>
</tr>
<tr>
<td>Quarter circular arc</td>
<td>$L = \frac{\pi r}{2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x_C = \frac{2r}{\pi}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$y_C = \frac{2r}{\pi}$</td>
<td></td>
</tr>
<tr>
<td>Quadrant of a circle</td>
<td>$A = \frac{\pi r^2}{4}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x_C = \frac{4r}{3\pi}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$y_C = \frac{4r}{3\pi}$</td>
<td></td>
</tr>
<tr>
<td>Semicircular arc</td>
<td>$L = \pi r$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x_C = r$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$y_C = \frac{2r}{\pi}$</td>
<td></td>
</tr>
<tr>
<td>Semicircular area</td>
<td>$A = \frac{\pi r^2}{2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x_C = r$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$y_C = \frac{4r}{3\pi}$</td>
<td></td>
</tr>
<tr>
<td>Rectangular area</td>
<td>$A = bh$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x_C = \frac{b}{2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$y_C = \frac{h}{2}$</td>
<td></td>
</tr>
<tr>
<td>Quadrant of an ellipse</td>
<td>$A = \frac{\pi ab}{4}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x_C = \frac{4a}{3\pi}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$y_C = \frac{4b}{3\pi}$</td>
<td></td>
</tr>
<tr>
<td>Triangular area</td>
<td>$A = \frac{bh}{2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x_C = \frac{2b}{3}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$y_C = \frac{h}{3}$</td>
<td></td>
</tr>
<tr>
<td>Parabolic spandrel</td>
<td>$A = \frac{bh}{3}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x_C = \frac{3b}{4}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$y_C = \frac{3h}{10}$</td>
<td></td>
</tr>
<tr>
<td>Triangular area</td>
<td>$A = \frac{bh}{2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x_C = \frac{a + b}{3}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$y_C = \frac{h}{3}$</td>
<td></td>
</tr>
<tr>
<td>Quadrant of a parabola</td>
<td>$A = \frac{2bh}{3}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x_C = \frac{5b}{8}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$y_C = \frac{2h}{5}$</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1) Determine the load P required to lift the uniform load $w = 400 \#$/ft. Use $x_1 = 6$ ft, $x_2 = 10$ ft.

\[\sum M_B = 0 = 2400 \#(31') - 4P(22') - P(16') - P(10') \]

\[114P = 77400 \]

\[P = 653 \# \]
Problem 2) Locate the centroid (neutral x-x- axis) for the shape shown below. Use $y_1=4''$, $y_2=12''$, $y_3=15''$, $y_4=6''$, $y_5=4''$, $x_1=x_3=4''$, $x_2=12''$.

\[A_1 = 820 \text{ in}^2 \]
\[A_2 = -113 \]
\[A_3 = -56.6 \]

\[\Sigma M_{REF} = (41')(20') \left[4\frac{1}{2}'' \right] - \frac{\pi(12'')^2}{4} \left[3'1'' \right] - \frac{\pi(12'')^2}{8} \left[10'' - \frac{4(6'')}{3\pi} \right] \]

\[\Sigma M_{REF} = \left[(41)(20) - \frac{\pi(12)^2}{4} - \frac{\pi(12)^2}{8} \right] y_i \]

\[\bar{y} = 19.81 \text{ in} \]
Problem 3) Solve for the volume generated by rotating the shape shown about the y-y axis, and the total surface area generated. In other words, I want the total volume of the shape so I can buy enough steel to make it, and the surface area so I can buy enough paint to paint it. Use \(x_1 = 4" \), \(x_2 = 3" \), \(x_3 = 2" \), \(y_1 = 6" \), \(y_2 = 3" \).

\[
L_2 = \sqrt{3^2 + 3^2} = 4.24\text{ in} \quad g_2 = \frac{2'' + 3''}{2} = 3.5''
\]

\[
L_2 = \sqrt{3^2 + 3^2} = 4.24\text{ in} \quad g_2 = \frac{2'' + 3''}{2} = 3.5''
\]

\[
L_1 = \sqrt{7^2 + 3^2} = 7.616\text{ in} \quad g_1 = \frac{2'' + 9''}{2} = 5.5''
\]

\[
L_3 = 6'' \quad g_3 = 9''
\]

\[
L_4 = 6'' \quad g_4 = 5''
\]

\[
L_5 = 4'' \quad g_5 = 7''
\]

\[
A_1 = \frac{1}{2} \times 9 \times 6 = 27\text{ in}^2
\]

\[
A_2 = 9 \times 6 = 54\text{ in}^2
\]

\[
V = A_1 \times (2\pi \times 4) + A_2 \times (2\pi \times 2) = 6\text{ in}^2 \times (2\pi \times 5.33) + 54\text{ in}^2 \times 2\pi \times 7''
\]

\[
V = 256\text{ in}^3
\]

\[
S_1 = L_1(2\pi g_1) = 7.616\text{ in} \times (2\pi) \times (5.5'') = 263
\]

\[
S_2 = L_2(2\pi g_2) = 4.24\text{ in} \times (2\pi) \times (3.5'') = 93
\]

\[
S_3 = L_3(2\pi g_3) = 6'' \times (2\pi) \times (9'') = 339
\]

\[
S_4 = 6'' \times (2\pi) \times (5'') = 188
\]

\[
S_5 = 4'' \times (2\pi) \times (7'') = 176
\]

\[
1060\text{ in}^2
\]
Problem 4) Determine the vertical and horizontal components for the reaction at C. The bar has a total mass of 100 kg. Use \(x_1 = 3 \text{m}, x_2 = 8 \text{m}, x_3 = 10 \text{m} \).

\[
W_{\text{bar}} = 100 \text{kg}(9.81 \text{m/s}^2) = 981 \text{ N @ center}
\]

\[
\Sigma M_c = 0 = \frac{12}{13} T(18 \text{m}) - \frac{4}{5} T(10 \text{m}) + (981 \text{N})(\frac{21}{2} \text{m})
\]

\[
16.62T + 8T = 10300
\]

\[
T = 418 \text{ N}
\]

\[
\Sigma F_H = 0 = \frac{5}{13} (T) - \frac{3}{5} (T) + C_H
\]

\[
C_H = \frac{5}{13} (418) + \frac{3}{5} (418) = 90 \text{ N}
\]

\[
\Sigma F_V = 0 = \frac{12}{13} T + \frac{4}{5} T - 981 + C_V
\]

\[
C_V = 981 - \frac{12}{13}(418) - \frac{4}{5}(418)
\]

\[
= 261 \text{ N}
\]
Problem 5) Solve for the reactions for the structure loaded as shown. Note – nothing on the drawing is to scale for your numbers. The distributed load shown is parabolic with \(w = 2 \text{k/ft} \), and \(M = 200 \text{kft} \), \(x_1 = 10 \text{ft} \), \(x_2 = 8 \text{ft} \), \(x_3 = 6 \text{ft} \).

\[
\omega \quad P = \frac{2bh^3}{3} = 2(10 \text{ft})(2 \text{k/ft}) = 13.33 \text{k}
\]

\[
M = 200 \text{kft}
\]

\[
y = 8 \tan 60^\circ = 13.86 \text{ft}
\]

\[
\tan 60^\circ = \frac{y}{8}
\]

\[
\Sigma M_A = 0 = (13.33 \text{k})(6.25+8+6) - 200 - R_c(13.86 \text{ ft})
\]

\[
R_c = 5.05 \text{k}
\]

\[
\Sigma F_v = 0 = -13.33 \text{k} + A_v
\]

\[
A_v = 13.33 \text{k}
\]

\[
\Sigma F_h = 0 = -5.05 \text{k} + A_h
\]

\[
A_h = 5.05 \text{k}
\]
Problem 6) A set of forces causes a total moment about point B equal to \(-100\mathbf{i} + 200\mathbf{j} + 600\mathbf{k}\). Determine the scalar component of the moment about the CB axis:

\[
M_{CB} = \overrightarrow{M} \cdot \mathbf{e}_{CB}
\]

\[
M_{CB} = -100\mathbf{i} + 200\mathbf{j} + 600\mathbf{k}
\]

\[
L_{CB} = \sqrt{(-7)^2 + (4)^2 + (-4)^2} = 9
\]

\[
\mathbf{e}_{CB} = -\frac{7}{9}\mathbf{i} - \frac{4}{9}\mathbf{j} - \frac{4}{9}\mathbf{k} = -0.778\mathbf{i} - 0.444\mathbf{j} - 0.444\mathbf{k}
\]

\[
M_{CB} = \left[-100\mathbf{i} + 200\mathbf{j} + 600\mathbf{k} \right] \cdot \left[-\frac{7}{9}\mathbf{i} - \frac{4}{9}\mathbf{j} - \frac{4}{9}\mathbf{k} \right]
\]

\[
= 100(\frac{7}{9}) - 200(\frac{4}{9}) - 600(\frac{4}{9})
\]

\[
= -277.8
\]