1) $\Sigma M_A = 0 = -(2)(10)(5) + R_{DV}(12)$
 $R_{DV} = 8.33$ kN

2) $\Sigma F_V = 0 = 8.33 - R_{AV}$
 $R_{AV} = +8.33$ kN

3) $\Sigma F_H = 0 = +2(10) - R_{AH}$
 $R_{AH} = +20$ kN

3) $\Sigma M_A = 0 = -20$ kN (5m) + $R_D(12m)$

Drawn on tension side

$A_{BC} = 0$

$8.33 = V_{BC}$

$V_{CD} = 0$

8.33 kN = A
\[\Sigma M_y = -20y + 2 \left(\frac{y}{2} \right) \left(\frac{y}{2} \right) + M_y \]

so

\[M_y = 20y - y^2 \quad (0 \leq y \leq 10m) \]

\[\text{Check : } M_{@y=10m} = 20(10) - (10)^2 \]

\[= 200 - 100 \]

\[= 100 \text{ kNm} \]

\[M_{@y=5m} = 20(5) - (5)^2 \]

\[= 75 \text{ kNm} \]

\[M_{@y=0m} = 20(0) - (0)^2 \]

\[= 0 \text{ kNm} \]
2 kN/m

\[\Delta B_1 = -\frac{5wl^4}{384EI} \]

\[\Delta B_2 = \frac{R_B l^3}{48EI} \]
APPENDIX D Beam Deflections and Slopes

<table>
<thead>
<tr>
<th>Beam and Loading</th>
<th>Elastic Curve</th>
<th>Maximum Deflection</th>
<th>Slope at End</th>
<th>Equation of Elastic Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>$y = \frac{P L^2}{3 E I}$</td>
<td>$\frac{P L^2}{2 E I}$</td>
<td>$y = \frac{P}{6 E I} \left(x^3 - 3 L x^2 \right)$</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>$y = \frac{w L^4}{6 E I}$</td>
<td>$\frac{w L^3}{6 E I}$</td>
<td>$y = -\frac{w}{24 E I} \left(x^4 - 4 L x^3 + 6 L^2 x^2 \right)$</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>$y = \frac{M L^2}{2 E I}$</td>
<td>$\frac{M L}{E I}$</td>
<td>$y = \frac{M}{2 E I} x^2$</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>$y = \frac{P L^3}{48 E I}$</td>
<td>$\pm \frac{P L^2}{16 E I}$</td>
<td>For $x \leq \frac{L}{2}$: $y = \frac{P}{48 E I} \left(4 x^3 - 3 L x^2 \right)$</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>For $a > b$: $\frac{P b (L^2 - b^2)^{3/2}}{9 \sqrt{5} E I}$ at $x = \frac{L^2 - b^2}{3}$</td>
<td>$\frac{P b (L^2 - b^2)}{6 E I}$</td>
<td>$\theta_A = \frac{P b (L^2 - b^2)}{6 E I}$ For $x < a$: $y = \frac{P b}{6 E I} \left(x^3 - (L^2 - b^2) x \right)$ For $x = a$: $y = -\frac{P a b^3}{3 E I}$</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>$y = \frac{5 w L^4}{384 E I}$</td>
<td>$\pm \frac{w L^3}{34 E I}$</td>
<td>$y = -\frac{w}{24 E I} \left(x^4 - 2 L x^3 + L^2 x \right)$</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>$y = \frac{M L^2}{9 \sqrt{3} E I}$</td>
<td>$\theta_A = \frac{M L}{6 E I}$</td>
<td>$\theta_B = -\frac{M L}{3 E I}$ $y = -\frac{M}{6 E I} \left(x^3 - L^2 x \right)$</td>
</tr>
</tbody>
</table>
Singularity Functions would be better!

\[M_x = A \cdot \xi - 2 \frac{\xi^2}{2} + B \cdot \xi - 8 = \frac{d^2 y}{dx^2} \frac{EI}{\xi} \]

\[\frac{dy}{dx} = +C_1 \]

\[y = +C_1 \xi + C_2 \]

B.C. @ \(\xi = 0, y = 0 \); \(\xi = 8, y = 0 \); \(\xi = 16, y = 0 \)
A of the column to a given point \(Q \) of its elastic curve, and by \(y \) the deflection of that point (Fig. 10.8a). It follows that the \(x \) axis will be vertical and directed downward, and the \(y \) axis horizontal and directed to the right. Considering the equilibrium of the free body \(AQ \) (Fig. 10.8b), we find that the bending moment at \(Q \) is \(M = -Py \). Substituting this value for \(M \) in Eq. (9.4) of Sec. 9.3, we write

\[
\frac{d^2y}{dx^2} = \frac{M}{EI} = -\frac{P}{EI} y
\]
(10.4)

or, transposing the last term,

\[
\frac{d^2y}{dx^2} + \frac{P}{EI} y = 0
\]
(10.5)

This equation is a linear, homogeneous differential equation of the second order with constant coefficients. Setting

\[
p^2 = \frac{P}{EI}, \quad p = \sqrt{\frac{P}{EI}}
\]
(10.6)

we write Eq. (10.5) in the form

\[
\frac{d^2y}{dx^2} + p^2 y = 0
\]
(10.7)

which is the same as that of the differential equation for simple harmonic motion except, of course, that the independent variable is now the distance \(x \) instead of the time \(t \). The general solution of Eq. (10.7) is

\[
y = A \sin px + B \cos px
\]
(10.8)

as we easily check by computing \(\frac{d^2y}{dx^2} \) and substituting for \(y \) and \(\frac{d^2y}{dx^2} \) into Eq. (10.7).

Recalling the boundary conditions that must be satisfied at ends \(A \) and \(B \) of the column (Fig. 10.8a), we first make \(x = 0, y = 0 \) in Eq. (10.8) and find that \(B = 0 \). Substituting next \(x = L, y = 0 \), we obtain

\[
A \sin pL = 0
\]
(10.9)

This equation is satisfied either if \(A = 0 \), or if \(\sin pL = 0 \). If the first of these conditions is satisfied, Eq. (10.8) reduces to \(y = 0 \) and the column is straight (Fig. 10.1). For the second condition to be satisfied, we must have \(pL = n\pi \) or, substituting for \(p \) from (10.6) and solving for \(P \),

\[
P = \frac{\pi^2 EI}{L^2}
\]
(10.10)

The smallest of the values of \(P \) defined by Eq. (10.10) is that corresponding to \(n = 1 \). We thus have

\[
P_{cr} = \frac{\pi^2 EI}{L^2}
\]
(10.11)

The expression obtained is known as Euler's formula, after the Swiss mathematician Leonhard Euler (1707–1783). Substituting this
\[P_a = \frac{\pi^2 EI}{L^2} = \frac{\pi^2 EA L^2}{L^2} \]

Let: \[Ar^2 = I \]

\[r = \sqrt{\frac{I}{A}} \]

\[\sigma_a = \frac{P_a A}{A} = \frac{\pi^2 EA L^2}{L^2} \]

\[\sigma_a = \frac{\pi^2 E L^2}{L^2/r^2} = \frac{\pi^2 E (L/r)^2}{r^2} \]

Slenderness ratio

\[P_a = \frac{m^2 \pi^2 EI}{L^2} \]

\[I_{yy} = \frac{6a^3}{12} \quad I_{xx} = \frac{a b^3}{12} \]
2" x 4" nominal
1 1/2" x 3 1/2" = True
Douglas fir

E = 1900 k/in²

P = A 14 text

\[I_{\text{weak}} = \frac{bh^3}{12} = \frac{(3.5)(1.5)}{12} = 0.9844 \text{in}^4 \]

\[P = \frac{\pi^2 EI_{yy}}{L^2} = \frac{(3.1415)(2.5)}{(8 \text{ft} \times 12 \text{in/ft})^2} \left(1,900 \frac{k}{\text{in}^2}\right)(0.9844 \text{in}^4) \]

= 2.003 k

\[L_{\text{eff}} = \frac{L_{\text{true}}}{2} \]

8 ft

L_{\text{eff}} = 8 \text{ ft}

L_{\text{true}} = 8 \text{ ft}

8 ft
\[P_{cr} = \frac{\pi^2 E I}{L_{eff}^2} = \frac{\pi^2 \left(1900 \text{ksi}\right) \left(0.9844 \text{in}^4 \right)}{\left(4 \text{ft} \ast 12 \text{in/ft} \right)^2} \]

\[= 8.0 \text{ k} \]

Top View

\[\frac{K}{\text{ksi}} \frac{\text{in}^4}{\text{ft}^2} \frac{\text{in}^2}{\text{ft}^2} \]