Axial Loading

\[S_{AD} = S_{AB} + S_{BC} + S_{CD} \]

\[S_{AD} = \frac{P_{AB}L_{AB}}{A_{AB}E_{AB}} + \frac{P_{BC}L_{BC}}{A_{BC}E_{BC}} + \frac{P_{CD}L_{CD}}{A_{CD}E_{CD}} \]

\[S = \sum_{i=1}^{n} \frac{P_i L_i}{A_i E_i} \]

All original material presented in this video or image was created by W. Lynn Beason, Ph.D.,PE. and is copyrighted 2015. No Part or portion of this material may be copied, transmitted or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.
\[\sigma = \frac{P}{A} \]

\[\epsilon = \frac{\sigma}{E} \]

\[P = \frac{5.5A}{L} \]

\[S = \frac{PL}{AE} \]

1) \[P + P_{AL} + P_{COP} = 0 \]

\[\sigma_{AL} = \frac{P_{AL}}{A_{AL}} \leq \sigma_{all_{AL}} \]

\[\sigma_{COP} = \frac{P_{COP}}{A_{COP}} \leq \sigma_{all_{COP}} \]

2) \[\frac{P_{ALL_{AL}}}{A_{AL} E_{AL}} = \frac{P_{C_{Lc}}}{A_{c} E_{c}} \]
1) \[\sum F_h = 0 = -P_{cd} + 60k \\
\frac{P_{cd}}{60k} = \frac{60k}{600N^2} = \frac{10k}{1N^2} \]

2) To solve for stress in BC:
\[\sum F_h = \sigma = +60k - 80k - P_{bc} \]
\[P_{bc} = 20k \]
\[\sigma_{bc} = \frac{20k}{101in^2} = 2 \frac{k}{in^2} \text{ shortening} \]

\[S_{cd} = \frac{P_{cd}L_{cd}}{A_{cd}E_{cd}} = \frac{(60k)(30in)}{(600N^2)(30 \times 10k/in^2)} = 0.01 \text{ in} \]

\[S_{bc} = \frac{P_{bc}L_{bc}}{A_{bc}E_{bc}} = 0.01 \text{ in} \]
\[S_{ab} = \frac{P_{ab}L_{ab}}{A_{ab}E_{bc}} = \frac{P_{ab}}{A_{ab}E_{bc}} \]

\[0 = 50k - 80k + 60k - P_{ab} \]
\[P_{ab} = 50 - 80 + 60k = 10k \]

\[S_d = S_{ab} + S_{bc} + S_{cd} \]