\[
\begin{align*}
G_y &= 10 \text{ kN/m}^2 \\
T_{xy} &= 6 \text{ kN/m}^2 \\
20 \text{ kN/m}^2 &= \sigma_x \\
V &= 20, +6 \\
\sigma_{p1} &= ? \\
\sigma_{p2} &= ? \\
T_{\text{max in plane}} &= ? \\
T_{\text{max anywhere}} &= ? \\
\tau_{30^\circ} &= \frac{\sigma_{30^\circ}}{2} \\
\frac{\sigma_x + \sigma_y}{2} &= \frac{20 + 10}{2} = 15 \text{ kN/m}^2 \\
V &= (20, 6) \\
20 - 15 &= 5 \\
R &= \pm \sqrt{5^2 + 6^2} = 7.81 \text{ kN/m}^2 \\
\sigma_{p1 \text{ in plane}} &= \sigma_{p1 \text{ anywhere}} = 15 + 7.81 = 22.81 \text{ kN/m}^2 \\
\sigma_{p2} &= +15 - 7.81 = 7.19 \text{ kN/m}^2
\end{align*}
\]
Solve for the stress in the beam shown.

Even seat @ A
Odd seat @ B
Mohr's Circles

\[\text{Rad} = \frac{\sqrt{w_x^2 + w_y^2}}{2} \]

\[w_x > w_y > 0 \]

\[\left(\frac{w_x + w_y}{2} + \text{Rad} \right) \]

\[w_{max} = + \text{Rad} \]

\[v_{max} = v_{cen} + \text{Rad} \]

\[\left(\frac{-w_x - w_y}{2} \right) \]

\[v_{cen} = \frac{z}{2} \]

\[\text{Rad} = \frac{1}{2} \sqrt{\left(\frac{w_x + w_y}{2} \right)^2 + w_{xy}^2} \]

\[v_{min} = - \text{Rad} \]

\[\left(\frac{w_x + w_y}{2} - \text{Rad} \right) \]

\[v_{min} = - \text{Rad} \]

\[\text{Shrining Stres} \]

[Diagram of Mohr's Circle with annotations and calculations.]
Mohr's Circle

2θ₁ = \sin \frac{-1}{\text{rad}} T_{xy}

Mohr's Circle
Sign Convention
- Tensile Normal stresses are positive
- Shearing stresses that would rotate the element clockwise are positive.
Absolute Maximum Shearing Stress

Plane Stress

All original material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2015. No Part or portion of this material may be copied, transmitted or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.
All original material presented in this video or image was created by W. Lynn Beason, Ph.D., PE. and is copyrighted 2015. No Part or portion of this material may be copied, transmitted or otherwise used without the express written consent of W. Lynn Beason, Ph.D., PE.
The largest absolute value is called the absolute maximum shearing stress.