Singularity Functions for deflections
Statically indeterm. structures \[\frac{d^2y}{dx^2} = \frac{M}{EI} \]

\[8 \frac{2k}{ft} C D E = \frac{F_{k}}{3k/ft} - \frac{G^{'}}{EI} \]

\[EI \frac{d^2y}{dx^2} = +60 \langle x-0 \rangle - \frac{w \langle x-6 \rangle^2}{2} \]

\[+ w \langle x-16 \rangle - M \langle x-20 \rangle \]

\[- \frac{b \langle x-24 \rangle^3}{2 \cdot 3} + \frac{b \langle x-33 \rangle^2}{2} + \frac{b \langle x-33 \rangle^3}{2 \cdot 3} \]

\[\frac{3}{9} \]

\[EI \frac{dy}{dx} = +60 \frac{\langle x-0 \rangle^2}{2} - \frac{w \langle x-6 \rangle^3}{2 \cdot 3} + \frac{w \langle x-16 \rangle^3}{2 \cdot 3} \]

\[- M \langle x-20 \rangle - \frac{b}{b} \frac{\langle x-24 \rangle^4}{2 \cdot 3 \cdot 4} + + + + + C_1 \]

\[EI y = +60 \frac{\langle x-0 \rangle^3}{2 \cdot 3} w \frac{\langle x-6 \rangle^4}{2 \cdot 3 \cdot 4} + + + + + C_1 x + C_2 \]

\[@ x = 0, \; y = \text{haveno clue} \]

\[@ x = 1, \; \theta = 0 \]
\begin{align*}
\Sigma F_h &= 0 = +R_3 \\
R_3 &= 0 \\
\Sigma F_v &= 0 \quad R_1, R_2, R_4 \\
\Gamma &= \frac{M c}{I} = \frac{M}{5}
\end{align*}

\[
E I \frac{d^2 y}{d x^2} = R_1 \left< x - a \right> - \frac{\omega \left< x - 10 \right>^2}{2} + R_2 \left< x - 22 \right>
\]

\[
+ R_4 \left< x - 22 \right>^2
\]

\[
E I \frac{dy}{dx} = \frac{R_1 \left< x - a \right>^2}{2} - \frac{\omega \left< x - 10 \right>^3}{2 \cdot 3} + C_1
\]

\[
E I y = \frac{R_1 \left< x - a \right>^3}{2 \cdot 3} - \frac{\omega \left< x - 10 \right>^4}{2 \cdot 3 \cdot 4} + C_1 x + C_2
\]

@ \(x = 0 \); \(y = 0 \):

\[
0 = \frac{R_1 \left< 0 \right>^3}{2 \cdot 3} - \frac{\omega \left< x \right>^4}{2 \cdot 3 \cdot 4} + C_1 0 + C_2
\]

@ \(x = L \); \(y = 0 \):

\[
0 = \frac{R_1 \left< 22 - a \right>^3}{2 \cdot 3} - \frac{\omega \left< 22 - 10 \right>^4}{2 \cdot 3 \cdot 4} + C_1 (22) + C_2
\]

@ \(x = L \); \(\frac{dy}{dx} = 0 \):

\[
0 = \frac{R_1 (22)^2}{2} - \frac{\omega (22 - 10)^3}{2 \cdot 3} + C_1
\]

\[
\Sigma M_{wall} = 0 \quad R_1, R_2, R_4
\]
\[\Gamma = \frac{P}{A} \]

\[P_{\alpha} = \frac{\pi^2 EI}{L^2} \left(\frac{K}{10^2} \right) \left(\frac{10^4}{1N^2} \right) \]
Column Buckling

\[P L = \frac{n \pi^2}{L^2} \]

\[P = \frac{1}{E} \frac{n \pi^2}{L^2} \]

\[P_c = \frac{\pi^2 E L^2}{t^2 A} \]

\[r_c = \frac{t}{\sqrt{A t}} \]

Euler's Buckling Equation

\[P_c = \frac{\pi^2 E I}{L^2} \]

\[\frac{P_c}{A} = \frac{\pi^2 E t}{L^2} \]

All original material presented in this video or image was created by W. Lynn Beason, Ph.D., PE. and is copyrighted 2015. No Part or portion of this material may be copied, transmitted or otherwise used without the express written consent of W. Lynn Beason, Ph.D., PE.