I am a graduating senior—circle one: Yes—No

READ THE FOLLOWING GENERAL EXAMINATION RULES:

1) Do not put your completed work anywhere that it can be seen. If any part of your work can be seen by others it will be confiscated and you will not be permitted to rework those problems. Place any pages of your work face down on your desk under your existing work, not on the floor next to you where it is visible.

2) Please remove your hat. If it is part of your head, turn it around backwards.

3) If your work is not legible, or if I cannot follow your logic at a glance, it will receive no credit. This paper must be written to acceptable engineering standards for credit. Please take this seriously as it will affect your grade.

4) You may work on the front or back of this paper. Just note if work is on the back.

5) You can use your own paper or paper supplied at the front of the room.

6) You MUST specify what you are doing every step of the way. ONLY if I can follow what you are trying to do and where you are getting your numbers from, will you receive partial credit should you go off track.

7) Write big and use lots of paper, leaving me room to grade your paper. If there is no room to tell you why points were deducted, I will only show you the point deduction and let you try and figure out why.

I have read and understand all of the above instructions: ____________ (Initials)

Ethical Standards:

Upon accepting admission to Texas A&M University, a student immediately assumes a commitment to uphold the Honor Code, to accept responsibility for learning, and to follow the philosophy and rules of the Honor System. Students will be required to state their commitment on examinations, research papers, and other academic work. Ignorance of the rules does not exclude any member of the TAMU community from the requirements or the processes of the Honor System.

"On my honor, as an Aggie, I have neither given nor received unauthorized aid on this exam."

Signature of student

Please do not open this exam until you are told to do so.
Problem 1) Our company will have to purchase a drilling rig if we submit and win a bid for a local city project. The project will last for 10 years. The rig will have an initial cost of $750,000, and a salvage value of $40,000. It will incur an annual maintenance cost of $60,000. Even with annual maintenance, it will start to break down and cost an additional $10,000 for repairs in the 6th year, $20,000 in the 7th year, $30,000 in the 8th, etc. How much should we include for the drill when calculating our costs on this project? Our MARR is 6%.
Problem 1)

\[F = 40,000 \]
\[i = 6\% \]
\[A = 60,000 \]

\[P = 750,000 \]

\[S = P - A \left(\frac{P}{A}, i, n \right) \]

\[\text{Price} = -750 - 60 \times 7,360,0872 - 10 \times 110,4593 - 51,350,7920,0943 + 40 \times 0,558,3953 \]

\[= -1260,04 \]
Problem 2) For the earlier drill problem, what depreciation will we take in the 4th year? The government classes the drill as 5 year property.
In 4th year by MACRS:
11.52% of $750,000 = $86,400

This comes directly from the F.E.R Reference Manual.

No calculations required.
Problem 3) Calculate the 3rd year depreciation permitted by MACRS for an item classed as 8 year property. Check to see if the value is controlled by double declining balance or straight line depreciation. Your MARR is 6%. Show all required calculations.
Prob 3) Cost = 100% Use mid-year convention
No salvage value

Year 0, value = 100%

At end of first year you get 1/2 year depreciation by double declining method

Deprec Year 1 = 100% \(\left(\frac{1}{8} \right) (2)(\frac{1}{2}) = 12.5\% \)

Book Value after year 1 = 100 - 12.5 = 87.5%

Deprec Year 2 = 87.5% \(\left(\frac{1}{8} \right) (2) = 21.875\% \)

Book Value after 2 = 87.5% - 21.875% = 65.625%

Deprec Year 3 = 65.625% \(\left(\frac{1}{8} \right) (2) = 16.406\% \)

Don't need. Book Value now = 65.625 - 16.406% = 49.219%

Problem to MACRS Depreciation in 2 year
3rd Year
49.219% \(\left(\frac{1}{8} \right) (2) = 12.309\% \)

Straight line depreciation:

3rd Year

Years depreciation remaining = 8 - 2.5 = 5.5
Book Value this year = 69.6363 yd
Straight line Deprec = \(\frac{69.6363}{5.5} \times 6.5 \times 6.67 \)
= 10.10%

Don't change.
Calculation of MACRS depreciation based on 200% depreciation

Enter number of years in cell F3 ------> **8** year property (Must be <=20 years)

<table>
<thead>
<tr>
<th>End of Year</th>
<th>Book Value</th>
<th>200% DB Deprec</th>
<th>Alternate SL Depr</th>
<th>Remaining Life</th>
<th>Deprec. Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.00%</td>
<td>12.50%</td>
<td>8</td>
<td></td>
<td>12.50%</td>
</tr>
<tr>
<td>2</td>
<td>87.50%</td>
<td>21.88%</td>
<td>11.67%</td>
<td>7.5</td>
<td>21.88%</td>
</tr>
<tr>
<td>3</td>
<td>65.63%</td>
<td>16.41%</td>
<td>10.10%</td>
<td>6.5</td>
<td>16.41%</td>
</tr>
<tr>
<td>4</td>
<td>49.22%</td>
<td>12.30%</td>
<td>8.95%</td>
<td>5.5</td>
<td>12.30%</td>
</tr>
<tr>
<td>5</td>
<td>36.91%</td>
<td>9.23%</td>
<td>8.20%</td>
<td>4.5</td>
<td>9.23%</td>
</tr>
<tr>
<td>6</td>
<td>27.69%</td>
<td>6.92%</td>
<td>7.91%</td>
<td>3.5</td>
<td>7.91%</td>
</tr>
<tr>
<td>7</td>
<td>19.78%</td>
<td>4.94%</td>
<td>7.91%</td>
<td>2.5</td>
<td>7.91%</td>
</tr>
<tr>
<td>8</td>
<td>11.87%</td>
<td>2.97%</td>
<td>7.91%</td>
<td>1.5</td>
<td>7.91%</td>
</tr>
<tr>
<td>9</td>
<td>3.96%</td>
<td>0.99%</td>
<td>7.91%</td>
<td>0.5</td>
<td>3.96%</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Total deduction = **100.00%**

Equations used in calculations:

- \(= 100\% \times \frac{2(B6/F3)}{2} \)
- \(= B6 - F6 \times \frac{2(B7/F3)}{2} = B7/E7 \)
- \(= B7 - F7 \times \frac{2(B8/F3)}{2} = B8/E8 \)
- \(= B8 - F8 \times \frac{2(B9/F3)}{2} = B9/E9 \)

When \(n < 15 \) use \(2.0 \times \frac{B6/F3}{2} \)

When \(n \geq 15 \) use \(1.5 \times \frac{B6/F3}{2} \)
Problem 4) Our company is considering two projects. Project A will have an initial cost of $200,000 and a uniform annual profit of $40,000 for 10 years. Project B is a 12 year project and will have an initial cost of $280,000 and a profit starting in the 1st year, of $8,000, $16,000 in the 2nd year, $24,000 in the 3rd year, etc. for a final profit of $96,000 in the 12th year. Which project, if either, should we select if our MARR is 6%?
Prob 4)

(A)

\[A = \$40 \, k \]

\[P = 200 \, k \]

\[E(UAV) = -P \left(A/P, 6\%, 10 \right) + 40 \, k \]

\[= -200 \left(0.1359 \right) + 40 \, k \]

\[= 12.82 \, k/\text{year} \]

(B)

\[P = 280 \, k \]

\[E(UAV) = -280 \left(A/P, 6\%, 12 \right) + 8 \left(A/G, 6\%, 12 \right) + 8 \, k \]

\[= -280 \left(0.1193 \right) + 8 \left(4.8113 \right) + 8 \, k \]

\[= 13.09 \, k/\text{yr} \]
An temporarily move to present:

A) \[NPW = -200 + 40 \left(\frac{P}{A, 6\%, 10} \right) = 94,403 \]
\[7,360,087 \]

B) \[NPW = -280 + 8 \left(\frac{P}{A, 6\%, 12} \right) + 8 \left(\frac{P}{G, 6\%, 12} \right) \]
\[8,383,844 \]
\[40,336,860 \]

\[P \]
\[0.135868 \]

A) \[ANW = 94,403 \left(\frac{A}{P, 6\%, 10} \right) = \$12,826/yr \]

B) \[ANW = 109,766 \left(\frac{A}{P, 6\%, 12} \right) = \$13,69K/yr \]
\[0.119277 \]
Problem 5) How much would you pay for a 10 year, 6% bond with a face value of $10,000 if your MARR is 8%?
10 year 6%
$10,000

Coupon value = $10,000(0.06) = $600/year
A = $600/yr
n = 10

\[P = \frac{600}{0.06} \left(\frac{1}{0.06} - \frac{1}{(1 + 0.06)^n} \right) + 10,000 \left(\frac{1}{0.08} - \frac{1}{(1 + 0.08)^n} \right) = 0 \]

\[P = 8649.06 \]

For MARR = 6%? (not asked)

\[P = 600 \times (1.73601) + 10,000 \times (0.5584) \]

\[P = 10,000 - makes\ sense \]
READ THE FOLLOWING GENERAL EXAMINATION RULES:

8) Do not put your completed work anywhere that it can be seen. If any part of your work can be seen by others it will be confiscated and you will not be permitted to rework those problems. Place any pages of your work face down on your desk under your existing work, not on the floor next to you where it is visible.

9) Please remove your hat. If it is part of your head, turn it around backwards.

10) If your work is not legible, or if I cannot follow your logic at a glance, it will receive no credit. This paper must be written to acceptable engineering standards for credit. Please take this seriously as it will affect your grade.

11) You may work on the front or back of this paper. Just note if work is on the back.

12) You can use your own paper or paper supplied at the front of the room.

13) You MUST specify what you are doing every step of the way. ONLY if I can follow what you are trying to do and where you are getting your numbers from, will you receive partial credit should you go off track.

14) Write big and use lots of paper, leaving me room to grade your paper. If there is no room to tell you why points were deducted, I will only show you the point deduction and let you try and figure out why.

I have read and understand all of the above instructions: ____________ (Initials)

Ethical Standards:

Upon accepting admission to Texas A&M University, a student immediately assumes a commitment to uphold the Honor Code, to accept responsibility for learning, and to follow the philosophy and rules of the Honor System. Students will be required to state their commitment on examinations, research papers, and other academic work. Ignorance of the rules does not exclude any member of the TAMU community from the requirements or the processes of the Honor System.

"On my honor, as an Aggie, I have neither given nor received unauthorized aid on this exam."

Signature of student

Please do not open this exam until you are told to do so.
Problem 1) How much would you pay for a 10 year, 8% bond with a face value of $10,000 if your MARR is 6%?
10-year 8%
$10,000

MARR = 6%

Coupon value = $10,000 \times (0.08) = $800/year

\[\begin{align*}
A &= $800/yr \\
n &= 10
\end{align*} \]

\[P = 7.3601 \]

\[-P + 800 \left[\frac{P}{A, 6\%, 10} \right] + 10,000 \left[\frac{P}{F, 6\%, 10} \right] = 0 \]

\[P = $11,472 \]
Problem 2) Our company is considering two projects. Project A will have an initial cost of $400,000 and a uniform annual profit of $80,000 for 10 years. Project B is a 12 year project and will have an initial cost of $560,000 and a profit starting in the 1st year, of $16,000, $32,000 in the 2nd year, $48,000 in the 3rd year, etc. for a final profit of $192,000 in the 12th year. Which project, if either, should we select if our MARR is 4%?
Prob 2)

(A)
\[A = 80^k \]
\[P = 400^k \]
\[EUAV = -400 \left(A/P, 4\%, 10 \right) + 80^k \]
\[= -400 \left(0.1233 \right) + 80^k \]
\[= 30.68^k/year \]

(B)
\[G = 19,000^k \]
\[P = 560^k \]
\[\text{\Phi} \]
\[4\% \]
\[m = 12 \]
\[EUAV = -560 \left(A/P, 4\%, 12 \right) + 16 \left(A/G, 4\%, 12 \right) + 16^k \]
\[= 36,85^k/year \]
Problem 3) Calculate the 3rd year depreciation permitted by MACRS for an item classed as 9 year property. Check to see if the value is controlled by double declining balance or straight line depreciation. Your MARR is 8%. Show all required calculations.
Prob 3) Cost = 100% Use mid-year convention
No salvage value

Year 0, value = 100%

At end of first year you get 1/2 year depreciation by double declining method

Deprec Year 1 = 100% \(\left(\frac{1}{9} \right) \left(\frac{2}{12} \right) = 11.1\% \)

Book Value after year 1 = 100 - 11.1 = 88.89%

Deprec Year 2 = 88.89, \(\left(\frac{1}{9} \right) \left(\frac{2}{12} \right) = 19.75\% \)

Book Value after 2 = 88.89 - 19.75 = 69.14

Deprec Year 3 = 69.14 - \(\frac{2}{9} \left(\frac{1}{9} \right) \left(\frac{2}{12} \right) \) = 15.36%

Straight line Depreciation:

3rd Year's depreciation remaining = 9 - 1.5 = 7.5
Book Value this year = 69.14\% / 7.5 yrs
Straight line Deprec = 9.22\% yrs
9.22% < 15.36%

Don't change.
Calculation of MACRS depreciation based on 200% depreciation

Enter number of years in cell F3 -> 9 year property (Must be <= 20 years)

<table>
<thead>
<tr>
<th>End of Year</th>
<th>Book Value</th>
<th>200% DB</th>
<th>Alternate SL Depr</th>
<th>Remaining Life</th>
<th>Deprec. Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.00%</td>
<td>11.11%</td>
<td>9</td>
<td></td>
<td>11.11%</td>
</tr>
<tr>
<td>2</td>
<td>88.89%</td>
<td>19.75%</td>
<td>10.46%</td>
<td>8.5</td>
<td>19.75%</td>
</tr>
<tr>
<td>3</td>
<td>69.14%</td>
<td>15.36%</td>
<td>9.22%</td>
<td>7.5</td>
<td>15.36%</td>
</tr>
<tr>
<td>4</td>
<td>53.77%</td>
<td>11.95%</td>
<td>8.27%</td>
<td>6.5</td>
<td>11.95%</td>
</tr>
<tr>
<td>5</td>
<td>41.82%</td>
<td>9.29%</td>
<td>7.60%</td>
<td>5.5</td>
<td>9.29%</td>
</tr>
<tr>
<td>6</td>
<td>32.53%</td>
<td>7.23%</td>
<td>7.23%</td>
<td>4.5</td>
<td>7.23%</td>
</tr>
<tr>
<td>7</td>
<td>25.30%</td>
<td>5.62%</td>
<td>7.23%</td>
<td>3.5</td>
<td>7.23%</td>
</tr>
<tr>
<td>8</td>
<td>18.07%</td>
<td>4.02%</td>
<td>7.23%</td>
<td>2.5</td>
<td>7.23%</td>
</tr>
<tr>
<td>9</td>
<td>10.84%</td>
<td>2.41%</td>
<td>7.23%</td>
<td>1.5</td>
<td>7.23%</td>
</tr>
<tr>
<td>10</td>
<td>3.61%</td>
<td>0.80%</td>
<td>7.23%</td>
<td>0.5</td>
<td>3.61%</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total deduction = 100.00%

Equations used in calculations:

<table>
<thead>
<tr>
<th>Book Value</th>
<th>200% D.B.Dep.</th>
<th>Alt S.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 100%</td>
<td>2*(B6/F3)/2</td>
<td>-</td>
</tr>
<tr>
<td>= B6 - F6</td>
<td>2*(B7/F3)</td>
<td>= B7/E7</td>
</tr>
<tr>
<td>= B7 - F7</td>
<td>2*(B8/F3)</td>
<td>= B8/E8</td>
</tr>
<tr>
<td>= B8 - F8</td>
<td>2*(B9/F3)</td>
<td>= B9/E9</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

When n < 15 use 2.0*(B6/F3)/2
When n >= 15 use 1.5*(B6/F3)/2
Problem 4) Our company will have to purchase a large pump if we submit and win a bid for a local city project. The project will last for 10 years. The pump will have an initial cost of $400,000, and a salvage value of $80,000. It will incur an annual maintenance cost of $40,000. Even with annual maintenance, it will start to break down and cost an additional $10,000 for repairs in the 6th year, $20,000 in the 7th year, $30,000 in the 8th, etc. How much should we include for the pump when calculating our costs on this project? Our MARR is 8%.
\[\Delta F = 80,000 \]

\[i = 8.9\% \]

\[A = 40,000 \]

\[P = 400,000 \]

\[$= -P - A \left[\sum_{i} P/A, i, m \right] - G \left[\sum_{i} P/G, i, m \right] + \left[\sum_{i} P/F, i, m \right] \]

\[\text{Price} = -400 - 40 \sum P/A, 8.9\%, 10^3 \]

\[-10 \sum P/G, 8.9\%, 6 \]

\[+ 80,000 \sum P/F, 8.9\%, 10^3 \]

\[= -400 - 40 \times 7,101 - 10 \times 523.35 \times 0.7258 \]

\[+ 80 \times 0.4632 \]

\[= -708.7 \]
Problem 5) For the earlier pump problem, what depreciation will we take in the 4th year? The government classes the pump as 5 year property.
#5) In 4th year by MACRS:
11.52% of $400,000 = $46,080

This value comes directly from the FE Reference Manual.

No calculations required.