**OLD Sample Final Exam -
information does not pertain to this semester.**

OK. I can live with it. I will
use the questions listed below, with only minor changes in things like Figure
Number, where the answer is located (change point B to G), stuff like that.

I would like to say that it has been a privilege to teach you this material this
semester. I am quite impressed with how much you have learned.

Good luck.

L^3

Printed Name ________________________________ Seat # ________

Generally if not listed in the problem use delta = little delta, DELTA = big
delta, E = 30,000 ksi, I = 100 in^4.

Problem 1) For the 10 structures shown in Figure 1, determine the degree of
statical indeterminacy for solution by flexibility methods. You may assume that
axial effects can be omitted.

Problem 2) Draw TWO released or primary structures amenable to solution by
flexibility methods for each of the structures shown in Figure 1. Carefully mark
and label your choice of unknowns.

Problem 3) For the 10 structures shown in Figure 1, determine the degree of
kinematic indeterminacy for solution by stiffness methods. You must assume that
axial effects are to be omitted.

Problem 4) For the 10 structures shown in Figure 1, determine the degree of
kinematic indeterminacy for solution by stiffness methods, assuming that axial
effects are not to be omitted.

Problem 5) Draw the only possible restrained or primary structure amenable to
solution by stiffness methods for each of the structures shown in Figure 1,
assuming that axial effects ARE to be omitted, and assuming that axial effects
ARE NOT to be omitted. Carefully mark and label your choice of unknowns in both
cases.

Problem 6) For the beam shown in Figure 2, draw quantitative influence lines
(i.e. list all values) for the reaction at A, the shear slightly to the right of
B, and the moment at point C.

Problem 7) For the multi-span statically indeterminate beam shown below, draw
qualitative influence lines for the reaction at G, the shear slightly to the
right of K, and the moment at point T, i.e. only show the shape of the influence
lines without values.

Problem 8) Draw a qualitative influence line for the axial load in column BC,
the shear at the left end of floor beam GH and the moment at the center of beam
MN for the multi-bay, multi-story frame shown below.

Problem 9) For the truck loading shown below, and given the shear, axial force
and moment influence lines shown below, determine where to place the truck for
maximum shear, moment and axial force, and calculate those quantities. Notice
the dead loads and live loads also given with the truck.

Problem 10) For the beam shown in the figure below, determine the horizontal,
vertical and rotational deflection at the end of the beam due to the loads
shown.

Problem 11) For the structure loaded as shown below, calculate DELTA10, delta11,
delta12, and delta13 for use in a flexibility solution.

Problem 12) For the structure loaded as shown below, calculate K11, K12, and K13
for use in a stiffness solution.

Problem 13) Set up the solution to solve for the forces in the structure loaded
as shown below, using slope deflection. You need not attempt to solve the final
set of equations, but you must calculate all values which go into those
equations.

Problem 14) Explain in enough detail that I am convinced that you know how to
use Visual Analysis to generate an influence line for moment (or shear, or axial
force) at point G in the structure shown below.

Problem 15) I will likely ask you how you would do something in Visual Analysis.
I don’t know what it will be. It might have something to do with loading, or
setting up the loads, plotting shear and moment diagrams after the problem is
solved, getting the final deflections of the joints, or …? If you ran VA during
the semester, you’re in good shape. If you let someone else do all the work for
you, you’re doomed.

Problem 16) For the multi-story multi-bay structure shown below, determine an
approximation for the end moments in beam CD. Moments of inertia are listed
below.

Problem 17) For the multi-story multi-bay structure shown below, use the portal
method or the cantilever method to determine a first approximation of the moment
at the top of column GH.

I will not ask you a question like Web Problem 8.04.