
An Insertion Heuristic for Scheduling Mobility Allowance
Shuttle Transit (MAST) Services

Luca Quadrifoglio, Maged M. Dessouky*, and Kurt Palmer

Daniel J. Epstein Department of Industrial and Systems Engineering

University of Southern California
Los Angeles, California 90089-0193

*Corresponding Author
maged@usc.edu

phone: 213-740-4891; fax: 213-740-1120

Abstract

In this paper, we develop an insertion heuristic for scheduling Mobility Allowance Shuttle
Transit (MAST) services, an innovative concept that merges the flexibility of Demand
Responsive Transit (DRT) systems with the low cost operability of fixed-route bus systems.
A MAST system allows buses to deviate from the fixed path so that customers within the
service area may be picked up or dropped off at their desired locations. Such a service
already exists in Los Angeles County. Line 646 operates during nighttime, transporting
passengers between a business area and a nearby bus terminal; since the current demand of
the service is very low, the service is entirely manageable by the bus operator, but a higher
demand would certainly require the help of information technologies by means of a
scheduling algorithm. We carry out a set of simulations to show the performance of the
algorithm in the service area covered by the existing MTA Line 646 at different demand
levels. The results show that our approach can be used as an effective method to automate
scheduling of this line and other services similar to it. Auth

or'
s P

ers
on

al
Cop

y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 1

1 Introduction

Demands on transit agencies for improved and extended services are increasing. On

the other hand, there is little public support for increases in fares or subsidies. Therefore,

transit agencies are currently seeking ways to improve service flexibility in a cost-efficient

manner.

Most bus transit systems fall into two broad categories: fixed-route and demand

responsive transit (DRT) systems. According to the National Transit Summaries and

Trends (NTST) report for 2000, the average cost per passenger trip for fixed-route bus

systems in the U.S. is $2.19 and a typical bus fare is around $0.50. On the contrary, for

DRT systems, the cost per passenger trip is $16.74, while a typical DRT fare is around $2-

3. Therefore, since DRT systems tend to be much more costly to deploy, they are largely

limited to specialized operations such as Dial-a-Ride service mandated under the

Americans with Disabilities Act (paratransit DRT). Fixed-route bus systems are instead

much more cost efficient and they require less government subsidy. This is primarily due

to the passenger loading capacity of the buses and the consolidation of many passenger

trips onto a single vehicle (ridesharing).

However fixed-route bus transit systems, as an alternative to private automobiles,

have major deficiencies. The general public considers the service to be inconvenient

because of its lack of flexibility since either the locations of pick-up and/or drop-off points

or the service’s schedule don’t match the individual rider’s desires. Moreover, the total trip

time is perceived as being too long and for longer trips there’s often a need of transfers

between vehicles.

On the other hand, commercial demand responsive transit (DRT) systems, such as

taxicabs and shuttle vans, provide much of the desired flexibility, but these improvements

in convenience come at a price. Taxicabs provide point-to-point pick-up and drop-off, and

near real-time scheduling; however, the cost per trip is not affordable on a regular basis for

most people. Shuttle vans provide flexible pick-up points. However, drop-off points are

limited to popular locations and often advanced scheduling is required. These restrictions

on flexibility allow the shuttle vans to guarantee sufficient ridesharing to operate at a

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 2

reduced cost per trip compared to that of taxicabs; even so, shuttle vans are still a lot less

cost efficient than fixed-route bus transit systems.

Thus, there is a need for a transit system that provides flexible service at a cost

efficient price. The Mobility Allowance Shuttle Transit (MAST) system is an innovative

concept that merges the flexibility of DRT systems with the low cost operability of fixed-

route bus systems. A MAST service has a fixed base route that covers a specific

geographic zone, with one or more mandatory checkpoints conveniently located at major

connection points or high density demand zones; the innovative twist is that, given an

appropriate slack time, buses are allowed to deviate from the fixed path to pick up and drop

off passengers at their desired locations. The MAST system works under a dynamic

environment since the majority of the requests occur while the bus is on duty (even though

reservations in advance are handled by the system). The only restriction on flexibility is

that the deviations must lie within a predetermined distance from the fixed base route.

Such a system somewhat already exists in a reduced and simplified scale. The

Metropolitan Transit Authority (MTA) of Los Angeles County has recently introduced

MAST as part of its feeder-line 646. Line 646 transports passengers between a large

business hub in the San Pedro area of Los Angeles County and a nearby bus terminal. The

area that Line 646 serves is located close to the Los Angeles harbor, and is one of the

county's busiest commercial hubs, consisting of several warehouses, factories and offices.

However, for safety reasons, employees of local firms working on night shifts have been

finding it extremely inconvenient to walk to and wait at a bus stop. Therefore, Line 646

offers a MAST nightline service. During daytime, this line serves as a fixed-route bus

system. During nighttime, the line changes to a MAST service and allows specific

deviations of half a mile from either side of the fixed route. Customers may call in to be

picked-up, or may ask the operator to be dropped-off at their desired locations if within the

service area.

Since the current demand of line 646 is low, the bus operator is able to make all the

decisions concerning accepting/rejecting customer requests and routing the vehicle.

Clearly, in case of heavier demand and several requests for deviations, the operator will not

be able to handle this task efficiently by himself/herself. An effective MAST system needs

to rely on recent developments in communication and computation technologies that allow

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 3

real-time information about pick-up/drop-off requests to be used to re-route the bus by

means of a scheduling algorithm.

There has been a significant amount of research in scheduling DRT systems, but we

are unaware of any work performed on scheduling systems such as the MAST service.

Although these two types of systems are related, DRT systems focus strictly on point-to-

point transport services, while the hybrid characteristic of the MAST service adds

additional and significant time and space constraints to the problem mainly due to the need

of having the shuttle arrive at checkpoints on or before their scheduled time.

The purpose of this paper is to address this gap in the research community by

developing an insertion heuristic algorithm suitable for a MAST system. An insertion

heuristic approach is used because they are computationally fast and they can easily handle

complicating constraints in a dynamic environment (Campbell and Savelsbergh, 2003)

The remainder of this paper is divided into six sections. After reviewing the

literature in Section 2, we define the MAST system in Section 3 and the control parameters

needed to enhance the algorithm performance in Section 4. Section 5 illustrates the

algorithm. In Section 6 we describe the experimental results obtained by simulation.

Section 7 provides conclusions.

2 Literature review

As previously mentioned, there is a significant body of work in the literature on

scheduling and routing DRT systems. Desaulniers et al. (2000) and Savelsbergh and Sol

(1995) provide a detailed review of the Pickup and Delivery problem and its related

problems. Most of this work is intended for Dial-a-Ride systems for the delivery of the

elderly and handicapped. Due to the combinatorial nature of the problem, most of the

research efforts focus on heuristic approaches.

Pioneering research on the Dial-a-Ride problem dates back to the seventies. Wilson

et al. (1971) formulate the problem as a dynamic search procedure, inserting newly arriving

passenger’s origin and destination into the prospective route of one of the buses.

Continuing work is presented by Wilson and Hendrickson (1980). Stein (1977, 1978a,

1978b) develops a probabilistic analysis of the problem and Daganzo (1978) presents a

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 4

model to evaluate the performance of a Dial-a-Ride system. Theoretical studies for the

single-vehicle case include also the work by Psaraftis (1980, 1983a), Sexton and Bodin

(1985a, 1985b), Sexton and Choi (1986), Desrosiers et al. (1986) for exact algorithms and

the work of Psaraftis (1983b, 1983c) for heuristic approaches. The work of Daganzo

(1984) is somewhat similar to the MAST system describing a checkpoint DRT system that

combines the characteristics of both fixed route and door-to-door service. In a checkpoint

system, a service request is still made but the pick-up and drop-off points are not at the door

but at centralized locations called checkpoints. However, the MAST system differs from a

checkpoint only system since it allows also for door-to-door requests.

Heuristics to solve multi-vehicle problems have been proposed by Psaraftis (1986),

Jaw et al. (1986), Bodin and Sexton (1986) and Desrosiers et al. (1988). Min (1989)

considers a vehicle routing problem with simultaneous pickups and deliveries that involves

the definition of a capacity constraint. Dumas et al. (1991) present a column generation

scheme for optimally solving the Pickup and Delivery Problem with time windows. Local

search procedures are reported in Van Der Bruggen et al. (1993) and Healy and Moll

(1995). Madsen et al. (1995) present an insertion heuristic. Ioachim et al. (1995) develop a

clustering algorithm. A simulated annealing procedure is introduced by Hart (1996). A

parallel insertion heuristic is proposed by Toth and Vigo (1997). Savelsbergh and Sol

(1998) propose three approximation algorithms derived from their branch-and-price based

optimal algorithm. Borndörfer et al. (1999) propose heuristics to solve a transportation

problem of handicapped persons. Tabu search techniques have been applied by Nanry and

Barnes (2000), Landrieu et al. (2001) and Cordeau and Laporte (2003). Teodorovich and

Radivojevic (2000) use a fuzzy logic approach. Li and Lim (2001) propose a metaheuristic.

Lao and Liang (2002) present a two-phase method. A parallel regret insertion heuristic is

done by Diana and Dessouky (2003). Exact procedures to solve small problems can be

found in Ruland and Rodin (1997) and Lu and Dessouky (2003). Feuerstein and Stougie

(2001) investigate the best possible competitive ratio for an on-line single-server dial-a-ride

problem; Uchimura et al. (2002) propose a hierarchical structure for demand responsive

services. A simulation model for paratransit services can be found in Fu (2002).

Recent papers focus on the design of Dial-a-Ride services on a technologically

advanced basis. Dial (1995) proposes the implementation of a decentralized control

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 5

strategy for a fleet of vehicles. Horn (2002b) develops an algorithm for the scheduling and

routing of a fleet of vehicles that is embedded in a modeling framework for the assessment

of the performance of a general public transport system with the latter being presented in

Horn (2002a).

3 System definition

The MAST system analyzed in this paper consists of a single vehicle, initially

associated with a predefined schedule along a fixed route, consisting of C checkpoints,

identified by c = 1, 2, …, C; two of them are terminals located at the extremities of the

route (c = 1 and c = C) and the remaining C-2 intermediate checkpoints are distributed

along the route. We consider a loop system, having the vehicle moving along the route

back and forth between 1 and C. A ride r is defined as a portion of the schedule beginning

at one of the terminals and ending at the other one after visiting all the intermediate

checkpoints; the vehicle’s schedule consists of R rides. Since the end-terminal of a ride r

corresponds to the start-terminal of the following ride r+1, the total number of stops at

checkpoints is TC = (C-1)R+1. Hence, the initial schedule’s array is represented by an

ordered sequence of stops s = 1, …, TC and their scheduled departure time ts (with ts+1 > ts)

are assumed to be constraints of the system which can not be violated. We treat the

departure times at the checkpoints as hard constraints since the checkpoints typically

represent major transfer centers and late arrivals to these stops will result in passengers

missing their connections.

The service area is represented by a rectangular region defined by L*W, where L

(on the x axis) is the distance between terminals 1 and C and W/2 (on the y axis) is the

maximum allowable deviation from the main route in either side (see Figure 1).
Auth

or'
s P

ers
on

al
Cop

y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 6

Figure 1 – MAST system

Customer types

The MAST system can respond to four different types of requests: regular pick-up

(P) and regular drop-off (D) representing customers picked up/dropped off at checkpoints;

non-checkpoint pick-up (NP) and non-checkpoint drop-off (ND) representing customers

picked up/dropped off at any location in the service area. Hence, we can categorize the

customers in four different types:

• PD: pick-up and drop-off at checkpoints

• PND: pick-up at checkpoint, drop-off at non-checkpoint

• NPD: pick-up at non-checkpoint, drop-off at checkpoint

• NPND: pick-up and drop-off at non-checkpoints

At any moment a customer may call in (or show up at checkpoints), specifying the

locations of both pick-up and drop-off points, and the MAST algorithm will attempt to

place the request in the schedule by means of an insertion procedure. We assume that

customers are immediately ready to be picked up at the moment of their request. However,

the system could easily handle reservations for future pick-ups by limiting the search for

insertion in the portion of the schedule following the reservation time specified by the

customer.

L

W/2

W/2

r

r+1

1 C

x

y

2 3 c C-1

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 7

While checkpoints are identified by s = 1,…,TC non-checkpoint customer request

(NP or ND) are identified by s = TC+1,…,TS where TS represents the current total number

of stops (including checkpoints and non-checkpoints). The index α(s), s = 1,…,TS

represents the current position of any stop s in the schedule. The problem is then to

determine the indices α(s), s = 1,…,TS and the departure times ts for non-checkpoint stops,

s = TC+1, …,TS while not violating the given departure times ts for checkpoint stops s = 1,

…,TC.

Slack time

In order to allow deviations from the main route to serve NP and ND requests

between two consecutive checkpoints, identified by s and s+1, there needs to be a certain

amount of slack time in the schedule. Let ()0
1, +ssst be the slack given by the schedule and is

computed as follows:

 ()0
1, +ssst = ts+1 - ts - ds,s+1/bs - bts+1 s = 1, …, NC-1 (1)

where bs is the vehicle speed, bts+1 is the time allowed at stop s+1 for passengers’

boardings and disembarkments and ds,s+1 is the distance between s and s+1. As more pick-

ups and drop-offs occur off the base route, the slack is reduced. Let sts,s+1 be the available

slack that can be used to route the bus off the base route. Initially,

 sts,s+1 = ()0
1, +ssst s = 1, …, NC-1 (2)

Idle policy

We assume that the bus, driving from checkpoint s to s+1, follows a no-idle policy

until all the requests in between them have been satisfied. The unused slack time sts,s+1

possibly still available when arriving to checkpoint s+1 is spent as idle time (note that

while the bus is idle at s+1, new upcoming customer requests can still be inserted in the

schedule before s+1 using sts,s+1 if feasible and best at the moment, meaning that the bus

leaves s+1 to serve the new requests and comes back to s+1 before ts+1).

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 8

Arrival times

While ts represents the scheduled departure time at stop s, we define t’ s as the arrival

time at stop s. Because of the idle policy, we have for non-checkpoint stops (s > TC)

ts = t’s assuming that boarding and disembarking times are small and for checkpoint stops

(s ≤ TC), ts � t’s and their initial values are:

 t’ s+1 = ts+1 - sts,s+1 s = 1, …, NC-1 (3)

Bus motion

We assume that the bus follows a rectilinear motion, allowing the vehicle to move

only along the horizontal or vertical direction; this is a good approximation of the real

world, since buses ride along streets which often form a grid.

Furthermore, whenever a horizontal or vertical direction can be equally chosen to

reach the next scheduled stop, the bus prefers the one that keeps it closer to the central x

axis of the service area. This behavior guarantees a better service to the future expected

demand under the assumption of uniform distribution of non-checkpoint requests.

4 Control parameters

The challenge of operating a MAST system mainly resides in defining the logic to

best operate the vehicle under a dynamic and multi-criteria environment. In particular we

need to set the insertion feasibility rules for any given customer at any point in time

because inserting a new request in the vehicle’s schedule even if feasible at that time, might

not be best overall. For this purpose we introduce the concept of “buckets” and make use

of parameters that are a function of the slack time and the relative position of the new

request with respect to the already scheduled stops.

4.1 Buckets

The MAST insertion algorithm does not explicitly add a constraint to limit the

maximum allowable ride time of each customer as the Dial-a-Ride algorithms generally do.

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 9

Instead, it obtains a similar result working with “buckets”. The underlying concept is that

for PND and NPD type of customers one of the service points (either a P or a D checkpoint)

is already part of the schedule; therefore, given the time of the customer request, the

algorithm attempts to insert the corresponding ND and NP stops in the “vicinity” of the first

occurrence of those checkpoints in the schedule’s array. If not feasible, the algorithm

checks for insertion in the “vicinity” of the following occurrences of the checkpoint of

interest, one by one, till feasibility is found. Clearly, this postponement causes a delay on

the whole trip, but the ride time will be upper bounded.

In order to define buckets, let’s consider the schedule’s array as shown in Table 1,

illustrating the checkpoints only with their corresponding stop index s. Each checkpoint c

is scheduled to be visited by the bus a number of times, with different stop indices sk(c)

(stop index of the kth occurrence of checkpoint c in the schedule), depending on how many

rides (R) are planned.

For each intermediate checkpoint c = 2, …, C-1 the indices sk(c), which identify

them in the schedule, are computed by the following sequence:

() ()() () () () ()[]
�
�
�

�
�
� −−−−+−+−−+=

2

12111
111

cCC
kCcs

k

k k = 1, …, R (4)

For the terminal checkpoints 1 and C, since their frequency of occurrence is halved,

the sequences are the following:

 () ()(){ }11211 −−+= kCsk k = 1, …, 1+�R/2� (5)

 () ()(){ }112 −−+= kCCCsk k = 1, …, 	R/2
 (6)

Definition: For every checkpoint c, we define a bucket of c, in general, as a portion

of the schedule delimited by two successive occurrences of c, namely all the stops s in the

schedule’s array such that α[sk(c)] ≤ α(s) < α[sk+1(c)] for any allowable k, as described in

equations (4), (5) and (6).

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 10

Table 1 – Schedule’s array and buckets

ride s Checkpoints c
1 1
2 2
3 3
… …
c c

… …
C-1 C-1

1

C C
C+1 C-1
… …

2(C-1)+1-(c-1) c
… …

2C-2 2

2

2C-1 1
2C 2
… …

2(C-1)+1+(c-1) c
… …

3

3C-2 C
… … …

r(C-1)+1-(c-1) c
… … r

r(C-1)+1 1
… …

r(C-1)+1+(c-1) c
… …

r+1

(r+1)(C-1)+1 C
… … …
R TC=R(C-1)+1 1 or C

The buckets’ definition for NPND type customers needs to be revised since they

don’t rely on checkpoints for pick-ups and drop-offs; so we identify the buckets with the

rides. More formally, let’s characterize the sequence representing the occurrences of any

terminal checkpoint (c = 1 or C):

 () ()(){ }111\1 −−+= kCCsk k = 1, …, R+1 (7)

1st bucket of c=1

bucket of c=2

another bucket of c=2

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 11

We have that, for NPND type customers, a bucket represents all the stops s such that

α[sk(1\C)] ≤ α(s) < α[sk+1(1\C)] for any allowable k as described in equation (7).

4.2 Usable slack time

The slack time is a crucial resource needed to serve customers. When this resource

is scarce, the system is not able anymore to properly satisfy new requests and it is forced to

postpone or reject them. Therefore, a MAST service needs to be particularly careful about

accepting customer requests that require a lot of slack time consumption preventing future

requests from being fully satisfied. In fact, an insertion that appears to be good at the time

of its placement in the schedule may very well not be so if we consider future expected

customer requests. We therefore need to define a parameter that properly controls the

consumption of slack time.

sts,s+1 represents the current available unused slack time between two consecutive

checkpoints s and s+1; while ()0
1, +ssst is the slack time initially available before any insertion

has been performed. We define the usable slack time u
ssst 1, + as the maximum amount of

slack time that any customer request is allowed to consume for its insertion between s and

s+1. It represents an upper bound on the usable amount of slack time and it prevents a

single insertion from consuming too much of it. u
ssst 1, + is defined as a function of the future

expected demand between s and s+1 and is not related to the actual unused slack time sts,s+1

and therefore u
ssst 1, + can be greater or lower than sts,s+1 depending on the circumstances. As

we will see in the insertion feasibility section, a request will be allowed to consume the

minimum value among u
ssst 1, + and sts,s+1 for its insertion.

We assume that the demand rate λ (# of requests per unit time in the service area

L*W) of non-checkpoint’s requests (NP and ND) is uniformly distributed in the service

area and constant over time. The time interval between two checkpoints s and s+1 is

defined by ts+1-ts, while the ratio between the area covered by the segment of the route from

s and s+1 and the total service area is given by
L

1+− ss xx
 (where xs and xs+1 are the x

coordinate values of s and s+1 with respect to the service area). Consequently, the expected

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 12

demand between s and s+1 (total # of insertion requests), Λs,s+1, is estimated as follows (see

Figure 2):

 Λs,s+1 = λ
L

1+− ss xx
(ts+1-ts) (8)

Figure 2 – Portion of service area covered by the segment between s and s+1

As soon as the vehicle departs from s at ts, the expected residual demand drops

linearly until reaching the zero value at ts+1. Hence, the expected residual demand as a

function of the current clock time tnow,
()nowt

ss 1, +Λ , may be expressed as (see Figure 3):

 ()

�
�
�

��
�

�

>

≤≤��

�
��
�

�

−
−−Λ

<Λ

=Λ

+

+
+

+

+

+

1

1
1

1,

1,

1,

 0

 1

snow

snows
ss

snow
ss

snowss

t
ss

tt

ttt
tt

tt

tt

now (9)

Figure 3 – Expected residual demand between s and s+1 as a function of tnow

L

W

x

s s+1

xs+1xs

Λs,s+1

1 C

tnow

()nowt
ss 1, +Λ

Λs,s+1

ts ts+1

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 13

We define the parameter πs,s+1 as a function of the expected demand as follows:

()

()nowt
ss

ss

ss
ss 1,

1,

0
1,

1,

1
1 +

+

+
+ Λ��

�
�
�
�

�

Λ
−

+=
π

π with 0 ≤ ()0
1, +ssπ ≤ 1 (10)

Since 0 ≤ ()nowt
ss 1, +Λ ≤ Λs,s+1, we have that ()0

1, +ssπ ≤ πs,s+1 ≤ 1 and ()0
1, +ssπ can be set accordingly.

We finally define the usable slack time, ussst 1, + , as follows:

 ()0
1,1,1, +++ = ssss

u
ss stst π (11)

If the residual expected demand ()nowt
ss 1, +Λ →0, then πs,s+1→1 and u

ssst 1, + → ()0
1, +ssst . Whereas,

when ()nowt
ss 1, +Λ attains its maximum (Λs,s+1), πs,s+1 reaches its minimum value, ()0

1, +ssπ , and so

does u
ssst 1, + = ()0

1, +ssπ ()0
1, +ssst .

Combining equations (9), (10) and (11) we finally derive the expression for the

usable slack time, u
ssst 1, + , as a function of tnow (see Figure 4):

() ()

()() ()

()�
�

�

�
�

�

�

>

≤≤�
�

�
�

	
��

�
��
�

�

−
−−−+

<

=

++

++
+

+

++

+

1
0

1,

1
0

1,
1

0
1,

0
1,

0
1,

1,

 111

snowss

snowsss
ss

snow
ss

snowssss

u
ss

ttst

tttst
tt

tt

ttst

st π

π

 (12)

Figure 4 – Usable slack time

tnow
ts ts+1

u
ssst 1, +

()0
1, +ssst

() ()0
1,

0
1, ++ ssss stπ

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 14

Let’s now consider a non-checkpoint request q located at the edge of the service

area, such that yq = 0 or yq = W and xs ≤ xq ≤ xs+1 and let’s assume that the schedule

between s and s+1 is empty (no previously inserted stops). In order to be inserted, the q

request would require an amount of slack time stq given by the time needed by the vehicle

to deviate from the x axis, serve the q request and come back to the x axis (stq = W/bs+btq).

Since the minimum amount of usable slack time from equation (12) is given by

u
ssst 1, + = ()0

1, +ssπ ()0
1, +ssst , we need to have u

ssst 1, + ≥ stq to prevent the q request from being

rejected. Hence we define:

 ()min0
1, +ssπ = (W/bs+btq)/

()0
1, +ssst (13)

as the minimum value of ()0
1, +ssπ that guarantees every non-checkpoint request q to be

considered for insertion between s and s+1 with the schedule empty, regardless of the

location of q as long as xs ≤ xq ≤ xs+1.

Setting ()0
1, +ssπ < ()min0

1, +ssπ would prevent the algorithm from working properly, because

some customers would be rejected not because of system saturation or end of service, but

because of improper parameter setting. Clearly, setting ()0
1, +ssπ = 0 would result in having

u
ssst 1, + = 0 for tnow < ts, preventing any requests before ts from being considered for

insertion. On the contrary, ()0
1, +ssπ = 1 causes u

ssst 1, + = ()0
1, +ssst at any time and customers

requests would have no limit on the amount of slack time allowed to be consumed for their

insertion.

A proper value of ()0
1, +ssπ in between ()min0

1, +ssπ and 1 allows the system to control the

consumption of slack time. Any request occurring before ts can use at most the minimum

value of u
ssst 1, + = ()0

1, +ssπ ()0
1, +ssst because there is an expected demand of future customers that

should be properly served with the remaining slack time. Whereas, if a customer request

occurs towards the end of the ride from s to s+1, it is allowed to consume a bigger portion

of the slack time until a maximum of ()0
1, +ssst because the chance of having additional

requests before the bus reaches the next checkpoint s+1 is very low.

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 15

4.3 Backtracking distance

The insertion procedure can cause the vehicle to drive back and forth with respect to

the direction of a ride r, not only consuming the extra slack time, but also having a negative

impact on the customers already onboard, which may perceive this behavior as an

additional delay. Therefore, we limit the amount of backtracking in the schedule. The

backtracking distance indicates how much the bus drives backwards on the x axis while

moving between two consecutive stops to either pick up or drop off a passenger at a non-

checkpoint stop with respect to the direction of the current ride. More formally, as shown

in Figure 5, given any two consecutive stops identified by a and b [such that

α(a)+1 = α(b)] and the vector bad ,
ˆ representing the distance from a to b, the backtracking

distance bda,b is defined as the negative component of the projection of bad ,
ˆ along the unit

vector rd̂ , representing the direction of the current ride r (1→C or vice versa, parallel to the

x axis) as follows:

 bda,b = −min(0, rd̂ ⋅ bad ,
ˆ) (14)

Figure 5 – Backtracking distance

The backtracking parameter (BACK > 0) is defined as the maximum allowable

backtracking distance that the bus can ride between any two consecutive stops. BACK is a

parameter and can be set accordingly; clearly with BACK ≥ L any backtracking is allowed.

rd̂rd̂

bda,b>0 bda,b=0

bad ,
ˆ

bad ,
ˆ

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 16

5 Algorithm description

5.1 Feasibility

While evaluating a customer request, the algorithm needs to determine the

feasibility of the insertion of a new stop (let’s identify it by s = q) between any two

consecutive stops a and b already scheduled. The extra time needed for the insertion is

computed as follows:

 ∆ta,q,b = (da,q+dq,b-da,b)/bs - btq (15)

Let checkpoints m and m+1 be the checkpoints prior and after stops a and b in the

schedule. The algorithm computes also the backtracking distances bda,q and bdq,b by

equation (14). Finally, it is feasible to insert q between a and b if:

 ∆ta,q,b ≤ min(stm,m+1,
u

mmst 1, +) (16)

 bda,q ≤ BACK (17)

 bdq,b ≤ BACK (18)

The algorithm doesn’t need to check feasibility with respect to the bus capacity because we

assume it to be infinite.

Figure 6 – Insertion feasibility of q

a b

q
da,q

da,b

dq,b

m m+1

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 17

5.2 Cost function

When searching for the best insertion among the feasible ones, the algorithm

computes a COST for each of them and selects the one with the minimum value. Let’s

assume that the insertion of a stop q between a and b is feasible and we need to compute its

COST. The system’s entities affected by an insertion are:

• The customer requesting the insertion, in terms of how long the ride time is.

• The passengers already onboard and waiting to be dropped off, in terms of

how much longer they have to stay onboard.

• The previously inserted customers in the schedule waiting to be picked up at

the NP stops, in terms of how much longer their pick-up time is delayed and

also in terms of how much their expected ride time changes.

• The vehicle, in terms of how much extra miles it has to drive.

Thus, the algorithm computes the following quantities:

• ∆PT: the sum over all passengers of the extra ride time, including the ride

time of the customer requesting the insertion.

• ∆PW: the sum over all passengers of the extra waiting time at the already

inserted NP stops.

Finally, the cost function is defined as:

 COST = w1*∆PT + w2*∆PW + w3*∆ta,q,b (19)

where w1, w2 and w3 are the weights, which can be modified as needed to emphasize one

factor over the others. ∆ta,q,b corresponds to the consumption of the slack time (the resource

needed by the system to serve more customers). During heavy demand periods, we should

assign a higher value to this scarce resource by increasing w3 with respect to w1 and w2. In

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 18

contrast, during low demand periods, the opposite is true and the COST function should

emphasize more the service quality for the customers rising w1 and w2 over w3.

5.3 Insertion procedure

PD type

PD type requests do not need any insertion procedure since both pick-up and drop-

off points are checkpoints and they are already part of the schedule. However, once the PD

type customers are onboard, they are important in evaluating the COST of any other

insertion.

PND type

PND type customers need to have their ND stop q inserted in the schedule. The

algorithm checks for insertion’s feasibility in the buckets of the P checkpoint. Since the

ND stop can not be scheduled before P, the first bucket to be examined is the one starting

with the first occurrence of P following the current position of the bus (bucket delimited by

sk’(P) and sk’+1(P) with () () nowPsk
k

tttsPsk
k

≥= ..,min'). Among the feasible insertions

between all pairs of consecutive stops a, b in the first bucket, the algorithm selects the one

with the minimum COST and then stops. The customer is therefore scheduled to be picked

up at sk’(P) and dropped off at the ND inserted stop q. If no feasible insertions are found in

the first bucket, the algorithm repeats the procedure in the second bucket (assuming that the

customer will be picked up at the beginning of the second bucket corresponding to the

following occurrence of P, sk’+1(P)). The process is repeated bucket by bucket until at least

one feasible insertion is found.

NPD type

NPD type customers need to have their NP stop q inserted in the schedule.

Similarly, the algorithm checks for insertion’s feasibility in the buckets of the D

checkpoint. The first bucket to be examined is the one delimited by the current position of

the bus (xb, yb) and the first occurrence of D following the current position of the bus (sk’(D)

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 19

with () () nowDsk
k

tttsDsk
k

≥= ..,min' '). In general, (xb, yb) doesn’t correspond to a stop.

Therefore, the first pair of points, between which the algorithm checks for feasibility, is

represented by (xb, yb) and the first stop to be visited afterwards, as shown in Figure 7.

Among the feasible insertions in the first bucket, the algorithm selects the one with the

minimum COST and then stops. The customer is therefore scheduled to be picked up at the

inserted NP stop q and dropped off at sk’(D). If no feasible insertions are found in the first

bucket, the algorithm repeats the procedure in the second bucket (forcing the customer to

be dropped off at the end of the second bucket, corresponding to the following occurrence

of D, sk’+1(D)). This process is repeated bucket by bucket until at least one feasible

insertion is found.

Figure 7 – Insertion from current bus position

NPND type

A NPND type customer requires the insertion of two new stops q and q’; therefore

the insertion procedure will be performed by a O(TS2) procedure, meaning that for each

feasible insertion of the NP stop q, the algorithm checks feasibility for the ND stop q’. A

NPND feasibility is granted when both NP and ND insertions are simultaneously feasible.

The search for NPND feasibility is performed with the additional constraint of having q

scheduled before q’.

Recall that buckets correspond to the rides for a NPND type customer. The search

for NPND feasibility is performed in at most two consecutive buckets meaning that when

checking for NP insertion feasibility in bucket i and i+1 , the algorithm looks for ND

insertion feasibility only in bucket i and i+1.

The algorithm starts checking the NPND feasibility in the first bucket delimited by

the current position of the bus (xb, yb) and the end of the current ride r. This is the first

α(s) (xb,yb)

q

α(s)+1

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 20

occurrence in the schedule of one of the terminal checkpoints s = 1 or s = C, namely

() () () nowCsk
k

k tttsCsCs
k

≥= \1' ..,\1min\1 . Among all feasible NPND insertions in the first

bucket, the algorithm selects the one with the minimum COST. If no NPND feasibility is

found, the algorithm will then check pairs of two consecutive buckets at a time, increasing

the “checking-range” by one bucket at each step (buckets 1/2, then buckets 2/3, …, i/i+1 ,

etc.). While checking buckets i/i+1 , we already know that NPND insertion is infeasible in

bucket i (because it has been already established before in the procedure while checking

buckets i-1/i). Therefore, while NP insertion feasibility needs to be considered in both

buckets (since NPND insertion infeasibility in bucket i doesn’t prevent NP insertion to be

feasible in i), ND insertion needs to be checked only in bucket i+1 . The procedure will

continue till at least one NPND feasible insertion is found.

Rejection policy

The general assumption while performing the insertion procedure is a no-rejection

policy from both the MAST service and the customers. Thus, the algorithm attempts to

insert the customer requests checking if necessary the whole existing schedule bucket by

bucket, and rejection may occur only if there is no feasibility at all. It may occur, for

example with a very high demand rate, or when a customer request arrives towards the end

of the service. On the other hand, the customers are assumed to never reject the insertion

proposed by the algorithm and there is no negotiation between the MAST system and the

customers.

5.4 Update procedure

Once a minimum COST feasible insertion is selected, a new stop q (either a NP or a

ND request) has been successfully scheduled between two points a and b in a portion of the

schedule delimited by checkpoints m and m+1, and the variables of the system need to be

updated.

The slack time will be updated as follows:

 stm,m+1 = stm,m+1 - ∆ta,q,b (20)

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 21

The departure and arrival times will also be updated (delayed) as follows:

 ts = ts + ∆ta,q,b ∀s s.t. α(s)∈[α(b), α(m+1)) (21)

 t’ s = t’ s + ∆ta,q,b ∀s s.t. α(s)∈[α(b), α(m+1)] (22)

Since the departure times ts of checkpoints (s ≤ TC) are constraints of the system

and act as “time-barriers”, all the stops that are not in the portion of the schedule where the

insertion takes place (between m and m+1) are not affected. We can therefore identify six

different cases:

• Customers having both pick-up and drop-off stops scheduled before q are

not affected by the insertion.

• Customers having their pick-up stop before q and their drop-off stop in

between q and m+1 will have their ride time increased because their drop-

off stop will be delayed as given by equation (22).

• Customers having their pick-up stop before q and their drop-off stop after

m+1 will not be affected by the insertion because the departure time tm+1

will remain unchanged.

• Customers having both their pick-up and drop-off stops in between q and

m+1 will have both of them delayed by the same amount as given by

equations (21) and (22). Therefore, their waiting time at the pick-up stop

will be increased but their ride time will remain unchanged.

• Customers having their pick-up stop in between q and m+1 and their drop-

off stop after m+1 will have their waiting time at the pick-up stop increased

as given by equation (21) and their ride time decreased by the same amount

because their drop-off stop will not be affected.

• Customers having both their pick-up and drop-off stops after m+1 will not

be affected.

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 22

Time windows

The algorithm provides customers at the time of the request with time windows for

their pick-up and drop-off locations. To do so, it computes the earliest departure time from

q, etq, as follows:

 etq = ta + da,q/bs + btq (23)

where ta represents the current departure time from stop a. Also the departure time of q is

initialized likewise:

 tq = ta + da,q/bs + btq = etq (24)

It can easily be shown that etq is a lower bound for any further updates of tq.

The algorithm then computes the latest departure time from q, ltq, as follows:

 ltq = etq + stm,m+1 (25)

We prove that ltq is an upper bound for tq by the following contradiction argument.

Let’s use the superscript β (with β = 0, …, f) to indicate the βth update of a variable and

suppose that tq
(f) > ltq, we have tq

(f)-tq
(0) > ltq-tq

(0). We also know by equation (21) that:

tq
(f)-tq

(0) = (tq
(f)-tq

(f-1))+…+(tq
(β)-tq

(β-1))+…+(tq
(1)-tq

(0))=

 = ∆tf+…+ ∆tβ+…+∆t1 = �
=

∆
f

k
kt

1

 (26)

and from equations (24) and (25), ltq-tq
(0) = ltq-etq = stm,m+1, but this would imply

�
=

∆
f

k
kt

1

 > stm,m+1, meaning that the sum of the extra time needed for insertions after the

insertion of q had exceeded the total slack time available after the insertion of q and this is a

contradiction since the feasibility check would have prevented this from happening.

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 23

Therefore equation (25) says that future possible insertions between m and q will delay tq to

a maximum total amount of time bounded by the currently available slack time.

In a similar fashion, the earliest and latest arrival times, et’q and lt’ q, are computed.

As a result, the customer, once accepted, is provided with etq, ltq, et’q and lt’ q knowing that

their actual times tq and t’q will be bounded by these values:

 etq ≤ tq ≤ ltq (27)

 et’q ≤ t’q ≤ lt’ q (28)

While a P request has etP = tP = ltP because the departure time from a checkpoint is

a constant in a MAST system, a D request will have et’D ≤ t’D ≤ lt’ D. Clearly NP and ND

requests will also have etNP ≤ tNP ≤ ltNP and et’ND ≤ t’ND ≤ lt’ ND.

6 Experimental results

In this section we discuss the results obtained by simulation analysis. The target is

to show that the insertion heuristic developed in this paper can be a used as an efficient

scheduling tool for real MAST systems. We test its performance on a simulation model of

the actual MAST service represented by MTA Line 646 in Los Angeles. In order to

perform this task, we first need to define the MAST system’s performance measures.

6.1 Performance measures

We define the following performance parameters for a MAST system:

• PT: average ride time per passenger

• PW: average extra waiting time (tNP - etNP) over NP requests only

• M: total miles driven by the bus

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 24

These three indicators are directly related to the corresponding terms of the COST function

in Equation (19): ∆PT, ∆PW, ∆ta,q,b. Thus, we can similarly define the overall performance

Z of a MAST system as:

Z = w1*PT*NCT + w2*PW*NCNP + w3*M/bs (29)

where NCT and NCNP stand respectively for the total number of customers and the total

number of NP customer requests (NPD and NPND types) served by the system. Z is in

time units.

In addition, let’s define:

• PI: average time interval between request/show up and earliest pick-up

time (etP or etNP) per passenger

• PST: percentage of the total initial slack time (= ()�
−

=
+

1

1

0
1,

TC

s
ssst) consumed

Given a total demand rate θ (customers/hour), we define the saturation level as the

maximum demand that a system configuration can satisfy without becoming unstable. This

level can be estimated by looking at the PI values. Given that the demand is uniform over

time, for systems well below their saturation level, the PI values should be around half the

headway of the system. A slightly larger value of PI, but constant over the simulation time,

shows that the system is near the saturation level, but still below it. Even if a few

customers have to wait longer to be picked up due to temporary congestions created by the

randomness of the demand, the system on average is stable. If instead the PI value

increases over the simulation time, then the system is unstable and the demand rate is above

the saturation level. An indication of how much the demand rate is below the saturation

level is given by the PST; values around 90% indicate that the demand rate is more or less

at saturation level. In addition, since the slack time consumption is directly proportional to

the miles driven, the PST and M values are related to each other. Therefore, bigger values

of M also indicate a higher level of saturation.

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 25

6.2 Algorithm performance

As earlier noted, a MAST service already exists in San Pedro in Los Angeles

County, Line 646. San Pedro is one of Los Angeles County's busiest commercial hubs,

consisting of several warehouses, factories and offices. Bus lines offer regular fixed-route

service in the area during the daytime. However, for safety reasons, employees of local

firms working on night shifts have been finding it extremely inconvenient to walk to and

wait at a bus stop. Therefore, MTA Line 646 offers a MAST service during nighttime,

transporting passengers between one of the business areas in San Pedro and a nearby bus

terminal.

The MAST system represented by Line 646 consists of a single vehicle covering a

service area with L = 10 miles and W = 1 mile, with two terminal checkpoints and one

intermediate checkpoint located in the middle. The duration of each ride is 30 minutes and

the headway is 1 hour. The service operates for 4.5 hours (9 rides) each night. Given that

bs = 25 miles/hour, the system has very little slack time (()0
1, +ssst = 2.5 minutes, for s = 1, …,

TC-1; therefore about 6 minutes per ride), allowing very few insertions of non-checkpoint

requests, but this is justified by the very low actual demand (4-5 customers/hour, most of

them being of type PND and NPD). These “light” conditions allow the bus operator to

easily make all the decisions concerning accepting/rejecting customer requests and routing

the vehicle since the system needs to deal with only 2-3 insertion requests per ride.

MTA is interested in testing the MAST concept for higher demand levels.

However, at the current slack level, the system will not be able to accommodate more

demand. Therefore, in order to evaluate the performance of the insertion algorithm for the

higher demand cases we perform the simulation experiments assuming a larger slack time.

A summary of the parameters values that are used in the experiments are shown in Table 2.

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 26

Table 2 – System parameters

L 10 miles
W 1 mile
C 3
ds,s+1 (s = 1, …, TC-1) 5 miles
ts+1 - ts (s = 1, …, TC-1) 25 min (t1 = 0)
bs 25 miles/hour
bts (s = 1, …, TS) 18 sec
w1 / w2 / w3 0.25 / 0.5 / 0.25

From equation (1) we compute the values of the initial slack times ()0
1, +ssst = 12.7 minutes

(s = 1, …, TC-1) that are about 50% of the time intervals between two consecutive

checkpoints’ departure times (ts+1 - ts = 25 minutes).

In setting the COST function’s weights, we assume that customers perceive the

waiting time at stops (w2) with more discomfort than the ride time on the bus (w1) and that

slack time consumption (w3) and passengers’ ride time (w1) are equally weighted.

Given a total demand rate θ (customers/hour) constant over time, we also assume

that the customer types are distributed as shown in Table 3:

Table 3 – Customer type distribution

Type PD PND NPD NPND
% 10% 40% 40% 10%

The above distribution assumes that most of the customers need to be transported

from a checkpoint to a desired location (home/office) and vice versa (PND and NPD types)

as actually is the case for Line 646. We further assume that the checkpoint requests (P and

D) are uniformly distributed among the C checkpoints and that non-checkpoint requests

(NP and ND) are uniformly distributed in the service area. The simulation is run for 50

hours. We verified that this length of simulation time was sufficiently long to have all the

performance parameters converge to their steady-state values for stable systems. According

to the parameter values shown in Table 2, the total number of rides R = 60.

We first perform a set of runs setting the control parameters BACK = L and

()0
1, +ssπ = 1 (for all s = 1,…,TC-1) allowing any backtracking and any slack time

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 27

consumption if available, thus giving the most freedom to the algorithm when checking for

insertion feasibility. At these parameter settings (configurations A) we seek the saturation

level of the system, by examining the PI and PST values for different values of the demand

θ. The results are shown in Table 4.

Table 4 – Saturation level for configurations A

Configuration A1 A2 A3
θ (customers/hour) 15 20 25
BACK (miles) L L L

()0
1, +ssπ s = 1, …, TC-1 1 1 1

PI (min) 56.52 61.67 236.74
PST (%) 81.3% 91.3% 98.9%
saturation level? below yes above
PW (min) 1.07 1.23 1.75
PT (min) 23.86 25.86 30.39
M (miles) 1012.7 1051.4 1083.8

The findings show that the saturation level is around θ = 20 customers/hour (configuration

A2). While A1 is a stable system relatively far from saturation (PST = 81.3%), A2 is right

at the boundary because the PI value is higher than half the headway (50 minutes), but it

doesn’t increase over time. Hence, the system is stable, but since the slack time

consumption is very high (PST = 91.3%), it is near the demand limit. Anything above

θ = 20 would lead to system instability as shown by the results from A3, where the PI value

is very high and keeps increasing with the simulation run time and the PST is close to

100%.

Therefore, by allowing more slack time in the schedule (()0
1, +ssst = 12.7 minutes

instead of 2.5, for s = 1, …, TC-1) and setting BACK = L and ()0
1, +ssπ = 1 (configurations A),

MTA Line 646 would be able to serve a demand θ with up to 20 customers/hour assuming

the customer type distribution of Table 3.

Now, keeping the demand at the saturation level (configuration A2), we want to

observe the effect of modifying the usable slack time u
ssst 1, + . For this purpose, maintaining

BACK = L, we vary the values of ()0
1, +ssπ (for all s = 1, …, TC-1) in the range from 1 to

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 28

()min0
1, +ssπ (configurations B) to observe the effect of this control parameter. We compare the

performances of each case by means on the object function, Z, as defined in equation (29).

The simulation run time is again 50 hours. Each configuration is tested with exactly the

same demand using CNR (Common Random Numbers). The results are summarized in

Table 5. From equation (13), ()min0
1, +ssπ is approximately equal to 0.22.

Table 5 – Effect of ()0
1, +ssπ - configurations B

Configuration B1 = A2 B2 B3 B4 B5 B6
θ (customers/hour) 20 20 20 20 20 20
BACK (miles) L L L L L L

()0
1, +ssπ s = 1, …, TC-1 1 0.75 0.5 0.4 0.3 ()min0

1, +ssπ =0.22

PI (min) 61.67 55.87 54.59 51.56 52.26 51.60
PST (%) 91.3% 87.4% 82.3% 79.2% 76.6% 72.0%
saturation level? yes below below below below below
PW (min) 1.23 1.15 1.25 1.32 1.41 1.37
PT (min) 25.86 24.68 24.13 23.09 22.60 22.76
M (miles) 1051.4 1021.7 989.0 968.2 951.5 921.7
Z 7149 6987 6853 6624 6533 6551

The figures reveal the positive effect of decreasing ()0
1, +ssπ from 1 to almost ()min0

1, +ssπ .

All the performance parameters significantly improve their values, with the exception of

PW, showing initially a progress, but then a progressive worsening. Also the Z values

gradually drop and reach their minimum value with configuration B5 at ()0
1, +ssπ ≅ 0.3,

slightly greater than ()min0
1, +ssπ . Due to the increased efficiency of the algorithm, all the

configurations drop well below their saturation levels. Note that configuration B6 has

lower PST and M values, indicating a better performance in terms of the slack time

consumption, but the overall performance Z shows a worsening of the service quality with

respect to B5. These results show the benefit of controlling the consumption of slack time

and saving some of it for future insertions.

Now, starting from configuration B5, we’d like to observe the effect of limiting the

backtracking distance. We perform another set of simulations (configurations C), keeping

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 29

θ = 20 and ()0
1, +ssπ = 0.3 and varying the BACK parameter from L to 0. The results are

shown in Table 6.

Table 6 – Effect of BACK - configurations C

Configuration C1 = B5 C2 C3 C4 C5 C6 C7 C8
θ (customers/hour) 20 20 20 20 20 20 20 20
BACK (miles) L 1.5 0.8 0.5 0.3 0.2 0.1 0

()0
1, +ssπ s = 1, …, TC-1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

PI (min) 52.26 52.26 52.35 51.70 52.19 52.23 51.28 51.84
PST (%) 76.6% 76.6% 75.8% 74.2% 72.8% 72.4% 71.2% 70.9%
saturation level? below below below below below below below below
PW (min) 1.41 1.41 1.39 1.38 1.37 1.37 1.42 1.43
PT (min) 22.60 22.60 22.62 22.46 22.34 22.28 22.36 22.94
M (miles) 951.5 951.5 946.4 936.1 927.2 924.2 916.8 914.5
Z 6533 6533 6528 6478 6435 6419 6451 6596

There are no changes in the performance by lowering the value of the BACK

parameter from L (configuration C1) down to about 1.5 miles (C2). This means that in the

simulation there are no cases of an insertion with a backtracking distance bigger than 1.5

miles. Therefore, setting BACK to a value larger than 1.5 has no effect on the schedule.

On the contrary, improvements in all the performance measures can be progressively seen

in cases C3, C4, C5 and C6 (BACK = 0.8, 0.5, 0.3 and 0.2) while C7 and C8 (BACK = 0.1

and 0) show better values for PST and M, but the overall performance Z slightly worsens

due to the increasing values of PW and PT. All the cases are well below their saturation

level and the best configuration according to Z is found by setting BACK = 0.2 miles,

corresponding to case C6. These experiments illustrate the positive effect of limiting to a

certain degree the amount of backtracking that the bus is allowed to do.

Case C6 represents a better configuration than A2 with respect to the overall

performance Z and almost all the other parameters (with the exception of PW, slightly

increased). In particular, the improved efficiency of the algorithm causes the M and PST

values to drop and the system is now well below saturation. We therefore look for the new

saturation level for these more efficient parameter settings by performing another set of

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 30

runs (configurations D, see Table 7) starting from configuration C6 and progressively

increasing θ.

Table 7 – New saturation level - configurations D

Configuration D1 = C6 D2 D3
θ (customers/hour) 20 25 30
BACK (miles) 0.2 0.2 0.2

()0
1, +ssπ s = 1, …, TC-1 0.3 0.3 0.3

PI (min) 52.23 55.98 77.58
PST (%) 72.4% 86.8% 95.9%
saturation level? below yes above
PW (min) 1.37 1.72 1.92
PT (min) 22.28 23.93 29.00
M (miles) 924.2 983.4 1020.6

As done for configurations A, we can estimate the saturation level for

configurations D by looking at the stability of the PI value over the simulation time. The

figures show that θ = 25 customer/hour (D2) approximately represent the limit for the

system. Anything above this value would cause instability. Therefore, the adjustments

made on the control parameters allow the insertion heuristics to handle a demand rate 25%

larger than the initial configuration A2.

7 Conclusions

In this paper we presented an insertion heuristic for scheduling Mobility Allowance

Shuttle Transit (MAST) services. The algorithm allows customers to place a request, and

once accepted, provides them with time windows for both pick up and drop off points. Due

to the dynamic nature of the environment, the algorithm makes effective use of a set of

control parameters to reduce the consumption of slack time and enhance the algorithm

performance. The results of simulations performed on a system representing the existing

MTA Line 646 of Los Angeles show the efficacy of the algorithm and its control

parameters, and demonstrate that the algorithm can be used as an effective method to

automate scheduling of this line and other similar services.

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 31

Future research on MAST systems could focus on finding lower bounds on the cost

function through exact mathematical approaches, improving the solution by introducing

local search techniques, studying the system under different demand distributions and

stochastic environments, finding the optimal slack time for a given demand distribution,

developing heuristics for the multiple bus MAST system to handle day-time heavy demand

environments and comparing MAST systems to conventional transportation services like

fixed-route bus or DRT.

8 Acknowledgements

The research reported in this paper was partially supported by the National Science

Foundation under grant NSF/USDOT- 0231665. We would also like to thank Operation

Shuttle, Inc. for providing us with data on Line 646.

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 32

Appendix

Notation

r [1, …, R] rides’ index
c [1, …, C] checkpoints’ index
s [1, …, TC, …, TS] stops’ index
sk(c) [1, …, TC] stops’ index of the kth occurrence of c
α(s) [1, …, TS] schedule's sequence index
L, W length, width of service area
R, C total # of rides, total # of checkpoints
TS, TC total # of stops, total # of stops at checkpoints
(xb, yb) current position of the bus
tnow current time
bts boardings/disembarkment time at s
bs bus speed
ts, ts’ departure/arrival times
ets, et’s earliest departure, arrival time at s
lts, lt’ s latest departure, arrival time at s

rd̂ direction of r

ds,s’, ',
ˆ

ssd scalar and vector distance between s and s’

bds,s’ Backtracking distance between s and s’
BACK Backtracking parameter
sts,s+1 slack time between checkpoints s and s+1

u
ssst 1, + slack time usable between checkpoints s and s+1

COST cost function
wi cost weights
∆PT total extra ride time
∆PW total extra waiting time
∆ts,s*,s’ extra time needed to insert s* between s and s’
PI average time interval between call/show-up and etP/etNP
PST % of total initial slack time used
PT average ride time
PW average extra waiting time over NP requests
M total miles driven
Z overall performance
θ total demand rate in service area
λ non-checkpoints’ demand rate in service area
Λs,s+1 expected demand in sector between checkpoints s and s+1
πs,s+1 slack time parameter
β variables’ update index

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 33

References

Bodin, L. and Sexton, T. (1986) “The multi-vehicle subscriber dial-a-ride problem”, TIMS
Studies in the Management Sciences, 22, 73-86.

Borndörfer, R. et al. (1999) “Telebus Berlin: vehicle scheduling in a dial-a-ride system”,
Lecture Notes in Economics and Mathematical Systems 471: Computer-Aided Transit
Scheduling. Springer-Verlag, Berlin, 391-422.

Campbell, A. M., and Savelsbergh, M. (2003) “Efficient insertion heuristics for vehicle
routing and scheduling problems,” to appear Transportation Science

Cordeau, J.F. and Laporte, G. (2003) “A Tabu Search Heuristic for the Static Multi-vehicle
Dial-a-ride Problem”, Transportation Research, 37(B), 579-594.

Daganzo, C.F. (1978) “An Approximate Analytic Model of Many-to-Many Demand
Responsive Transportation Systems”, Transportation Research, 12, 325-333.

Daganzo, C.F. (1984) “Checkpoint Dial-a-Ride Systems”, Transportation Research, 18B,
315-327.

Desaulniers, G. et al. (2000) “The VRP with pickup and delivery”, Cahiers du GERARD
G-2000-25, Ecole des Hautes Etudes Commerciales, Montréal.

Desrosiers, J., Dumas, Y. and Soumis, F. (1986) “A dynamic programming solution of the
large-scale single-vehicle dial-a-ride problem with time windows”, American Journal of
Mathematical and Management Sciences, 6, 301-325.

Desrosiers, J., Dumas, Y. and Soumis, F. (1988) “The multiple dial-a-ride problem”,
Lecture Notes in Economics and Mathematical Systems 308: Computer-Aided Transit
Scheduling. Springer, Berlin.

Dial, R.B. (1995) “Autonomous Dial-a-Ride Transit: Introductory Overview”,
Transportation Research C, 3C, 261-275.

Diana, M. and Dessouky, M. (2003) “A New Regret Insertion Heuristic for Solving Large-
scale Dial-a-ride problems with Time Windows,” to appear Transportation Research.

Dumas, Y., Desrosiers, J. and Soumis, F. (1991) “The pickup and delivery problem with
time windows”, European Journal of Operational Research, 54, 7-22.

Feuerstein, E. and Stougie, L. (2001) “On-Line Single-Server Dial-a-Ride Problems”,
Theoretical Computer Science, 268, 91-105.

Fu, L. (2002) “A simulation model for evaluating advanced dial-a-ride paratransit systems”,
Transportation Research A, 36A, 291-307.

Hart, S.M. (1996) “The Modeling and Solution of a Class of Dial-a-Ride Problems Using
Simulated Annealing”, Control and Cybernetics, 25, 131-157.

Healy, P. and Moll, R. (1995) “A new extension of local search applied to the dial-a-ride
problem”, European Journal of Operational Research, 83, 83-104.

Horn, M.E.T. (2002a) “Multi-modal and demand-responsive passenger transport systems: a
modeling framework with embedded control systems”, Transportation Research A, 36A,
167-188.

Horn, M.E.T. (2002b) “Fleet scheduling and dispatching for demand-responsive passenger
services”, Transportation Research C, 10C, 35-63.

Ioachim, I. et al. (1995) “A request clustering algorithm for door-to-door handicapped
transportation”, Transportation Science, 29, 63-78.

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 34

Jaw, J.J. et al. (1986) “A Heuristic Algorithm for the Multi-Vehicle Advance Request Dial-
a-Ride Problem with Time Windows”, Transportation Research, 20B(3), 243-257.

Landrieu, A., Mati, Y. and Binder, Z. (2001) “A Tabu Search Heuristic for the Single
Vehicle Pickup and Delivery Problem with Time Windows”, Journal of Intelligent
Manufacturing, 12, 497-508.

Lao, H.C. and Liang, Z. (2002) “Pickup and Delivery with Time Windows: Algorithms and
Test Case Generation”, International Journal on Artificial Intelligence Tools
(Architectures, Languages, Algorithms), 11(3), 455-472.

Li, H. and Lim, A. (2001) “A Metaheuristic for the Pickup and Delivery Problem with
Time Windows”, Proceedings 13th IEEE ICTAI 2001, Los Alamitos, CA, 160-167.

Lu, Q. and Dessouky, M. (2003) “An exact algorithm for the multiple vehicle pickup and
delivery problem”, to appear Transportation Science.

Madsen, O.B.G., Raven, H.F. and Rygaard, J.M. (1995) “A heuristic algorithm for a dial-a-
ride problem with time windows, multiple capacities, and multiple objectives”, Annals
of Operations Research, 60, 193-208.

Min, H. (1989) “The multiple vehicle routing problem with simultaneous delivery and
pick-up points”, Transportation Research A, 23A, 377-386.

Nanry, W.P. and Barnes, J.W. (2000) “Solving the pickup and delivery problem with time
windows using reactive tabu search”, Transportation Research B, 34B, 107-121.

Psaraftis, H.N. (1980) “A dynamic programming solution to the single vehicle many-to-
many immediate request dial-a-ride problem”, Transportation Science, 14, 130-154.

Psaraftis, H.N. (1983a) “An exact algorithm for the single vehicle many-to-many dial-a-
ride problem with time windows”, Transportation Science, 17, 351-357.

Psaraftis, H.N. (1983b) “k-interchange procedures for local search in a precedence-
constrained routing problem”, European Journal of Operational Research, 13, 391-402.

Psaraftis, H.N. (1983c) “Analysis of an O(N2) heuristic for the single vehicle many-to-
many Euclidean dial-a-ride problem”, Transportation Research B, 17B, 133-145.

Psaraftis, H.N. (1986) “Scheduling large-scale advance-request dial-a-ride systems”,
American Journal of Mathematical and Management Sciences, 6, 327-367.

Ruland, K.S. and Rodin, E.Y. (1997) “The pickup and delivery problem: faces and branch-
and-cut algorithm”, Computers and Mathematics with Applications, 33, 1-13.

Savelsbergh, M.W.P. and Sol, M. (1995) “The general pickup and delivery problem”,
Transportation Science, 29, 17-29.

Savelsbergh, M.W.P. and Sol, M. (1998) “Drive: dynamic routing of independent
vehicles”, Operations Research, 46, 474-490.

Sexton, T.R. and Bodin, L.D. (1985a) “Optimizing single vehicle many-to-many operations
with desired delivery times: 1. Scheduling”, Transportation Science, 19, 378-410.

Sexton, T.R. and Bodin, L.D. (1985b) “Optimizing single vehicle many-to-many operations
with desired delivery times: 2. Routing”, Transportation Science, 19, 411-435.

Sexton, T.R. and Choi, Y. (1986) “Pickup and delivery of partial loads with soft time
windows”, American Journal of Mathematical and Management Sciences, 6, 369-398.

Stein, D.M. (1977) “Scheduling Dial-a-Ride Transportation Systems: An Asymptotic
Approach”, Harvard University, Division of Applied Science, Technical Report No. 670.

Stein, D.M. (1978a) “Scheduling dial-a-ride transportation problems”, Transportation
Science, 12, 232-249.

Stein, D.M. (1978b) “An asymptotic probabilistic analysis of a routing problem”,
Mathematics of Operations Research, 3, 89-101.

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

 35

Teodorovich, D. and Radivojevic, G. (2000) “A fuzzy logic approach to dynamic dial-a-
ride problem”, Fuzzy Sets and Systems, 116, 23-33.

Toth, P., and Vigo, D. (1997) “Heuristic Algorithm for the Handicapped Persons
Transportation Problem”, Transportation Science, 31, 60-71.

Uchimura, K., Takahashi, H. and Saitoh, T. (2002) “Demand Responsive Service in
Hierarchical Public Transportation System”, IEEE Transactions on Vehicular
Technology, 51, 760-766.

Van Der Bruggen, L.J J., Lenstra, J.K. and Schuur, P.C. (1993) “Variable-depth search for
the single-vehicle pickup and delivery problem with time windows”, Transportation
Science, 27, 298-311.

Wilson, N.H.M. et al. (1971) “Scheduling Algorithms for a Dial-a-Ride System”, M.I.T,
Urban Systems Laboratory, Technical Report USL TR-70-13.

Wilson, N.H.M., and Hendrickson, C. (1980) “Performance Models of Flexibly Routed
Transportation Services”, Transportation Research, 14B, 67-78.

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

