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Abstract 

In this paper, we develop an insertion heuristic for scheduling Mobility Allowance Shuttle 
Transit (MAST) services, an innovative concept that merges the flexibility of Demand 
Responsive Transit (DRT) systems with the low cost operability of fixed-route bus systems.  
A MAST system allows buses to deviate from the fixed path so that customers within the 
service area may be picked up or dropped off at their desired locations. Such a service 
already exists in Los Angeles County.  Line 646 operates during nighttime, transporting 
passengers between a business area and a nearby bus terminal; since the current demand of 
the service is very low, the service is entirely manageable by the bus operator, but a higher 
demand would certainly require the help of information technologies by means of a 
scheduling algorithm.  We carry out a set of simulations to show the performance of the 
algorithm in the service area covered by the existing MTA Line 646 at different demand 
levels.  The results show that our approach can be used as an effective method to automate 
scheduling of this line and other services similar to it. Auth
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1 Introduction 

Demands on transit agencies for improved and extended services are increasing.  On 

the other hand, there is little public support for increases in fares or subsidies.  Therefore, 

transit agencies are currently seeking ways to improve service flexibility in a cost-efficient 

manner. 

Most bus transit systems fall into two broad categories: fixed-route and demand 

responsive transit (DRT) systems.  According to the National Transit Summaries and 

Trends (NTST) report for 2000, the average cost per passenger trip for fixed-route bus 

systems in the U.S. is $2.19 and a typical bus fare is around $0.50.  On the contrary, for 

DRT systems, the cost per passenger trip is $16.74, while a typical DRT fare is around $2-

3.  Therefore, since DRT systems tend to be much more costly to deploy, they are largely 

limited to specialized operations such as Dial-a-Ride service mandated under the 

Americans with Disabilities Act (paratransit DRT).  Fixed-route bus systems are instead 

much more cost efficient and they require less government subsidy.  This is primarily due 

to the passenger loading capacity of the buses and the consolidation of many passenger 

trips onto a single vehicle (ridesharing). 

However fixed-route bus transit systems, as an alternative to private automobiles, 

have major deficiencies.  The general public considers the service to be inconvenient 

because of its lack of flexibility since either the locations of pick-up and/or drop-off points 

or the service’s schedule don’t match the individual rider’s desires.  Moreover, the total trip 

time is perceived as being too long and for longer trips there’s often a need of transfers 

between vehicles. 

On the other hand, commercial demand responsive transit (DRT) systems, such as 

taxicabs and shuttle vans, provide much of the desired flexibility, but these improvements 

in convenience come at a price.  Taxicabs provide point-to-point pick-up and drop-off, and 

near real-time scheduling; however, the cost per trip is not affordable on a regular basis for 

most people.  Shuttle vans provide flexible pick-up points.  However, drop-off points are 

limited to popular locations and often advanced scheduling is required.  These restrictions 

on flexibility allow the shuttle vans to guarantee sufficient ridesharing to operate at a 

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



 2

reduced cost per trip compared to that of taxicabs; even so, shuttle vans are still a lot less 

cost efficient than fixed-route bus transit systems. 

Thus, there is a need for a transit system that provides flexible service at a cost 

efficient price.  The Mobility Allowance Shuttle Transit (MAST) system is an innovative 

concept that merges the flexibility of DRT systems with the low cost operability of fixed-

route bus systems.  A MAST service has a fixed base route that covers a specific 

geographic zone, with one or more mandatory checkpoints conveniently located at major 

connection points or high density demand zones; the innovative twist is that, given an 

appropriate slack time, buses are allowed to deviate from the fixed path to pick up and drop 

off passengers at their desired locations.  The MAST system works under a dynamic 

environment since the majority of the requests occur while the bus is on duty (even though 

reservations in advance are handled by the system).  The only restriction on flexibility is 

that the deviations must lie within a predetermined distance from the fixed base route. 

Such a system somewhat already exists in a reduced and simplified scale.  The 

Metropolitan Transit Authority (MTA) of Los Angeles County has recently introduced 

MAST as part of its feeder-line 646.  Line 646 transports passengers between a large 

business hub in the San Pedro area of Los Angeles County and a nearby bus terminal.  The 

area that Line 646 serves is located close to the Los Angeles harbor, and is one of the 

county's busiest commercial hubs, consisting of several warehouses, factories and offices.  

However, for safety reasons, employees of local firms working on night shifts have been 

finding it extremely inconvenient to walk to and wait at a bus stop.  Therefore, Line 646 

offers a MAST nightline service.  During daytime, this line serves as a fixed-route bus 

system.  During nighttime, the line changes to a MAST service and allows specific 

deviations of half a mile from either side of the fixed route.  Customers may call in to be 

picked-up, or may ask the operator to be dropped-off at their desired locations if within the 

service area. 

Since the current demand of line 646 is low, the bus operator is able to make all the 

decisions concerning accepting/rejecting customer requests and routing the vehicle.  

Clearly, in case of heavier demand and several requests for deviations, the operator will not 

be able to handle this task efficiently by himself/herself.  An effective MAST system needs 

to rely on recent developments in communication and computation technologies that allow 
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real-time information about pick-up/drop-off requests to be used to re-route the bus by 

means of a scheduling algorithm. 

There has been a significant amount of research in scheduling DRT systems, but we 

are unaware of any work performed on scheduling systems such as the MAST service.   

Although these two types of systems are related, DRT systems focus strictly on point-to-

point transport services, while the hybrid characteristic of the MAST service adds 

additional and significant time and space constraints to the problem mainly due to the need 

of having the shuttle arrive at checkpoints on or before their scheduled time. 

The purpose of this paper is to address this gap in the research community by 

developing an insertion heuristic algorithm suitable for a MAST system.  An insertion 

heuristic approach is used because they are computationally fast and they can easily handle 

complicating constraints in a dynamic environment (Campbell and Savelsbergh, 2003) 

The remainder of this paper is divided into six sections.  After reviewing the 

literature in Section 2, we define the MAST system in Section 3 and the control parameters 

needed to enhance the algorithm performance in Section 4.  Section 5 illustrates the 

algorithm.  In Section 6 we describe the experimental results obtained by simulation.  

Section 7 provides conclusions. 

 

2 Literature review 

As previously mentioned, there is a significant body of work in the literature on 

scheduling and routing DRT systems.  Desaulniers et al. (2000) and Savelsbergh and Sol 

(1995) provide a detailed review of the Pickup and Delivery problem and its related 

problems.  Most of this work is intended for Dial-a-Ride systems for the delivery of the 

elderly and handicapped.  Due to the combinatorial nature of the problem, most of the 

research efforts focus on heuristic approaches. 

Pioneering research on the Dial-a-Ride problem dates back to the seventies.  Wilson 

et al. (1971) formulate the problem as a dynamic search procedure, inserting newly arriving 

passenger’s origin and destination into the prospective route of one of the buses.  

Continuing work is presented by Wilson and Hendrickson (1980).  Stein (1977, 1978a, 

1978b) develops a probabilistic analysis of the problem and Daganzo (1978) presents a 
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model to evaluate the performance of a Dial-a-Ride system.  Theoretical studies for the 

single-vehicle case include also the work by Psaraftis (1980, 1983a), Sexton and Bodin 

(1985a, 1985b), Sexton and Choi (1986), Desrosiers et al. (1986) for exact algorithms and 

the work of Psaraftis (1983b, 1983c) for heuristic approaches.  The work of Daganzo 

(1984) is somewhat similar to the MAST system describing a checkpoint DRT system that 

combines the characteristics of both fixed route and door-to-door service.  In a checkpoint 

system, a service request is still made but the pick-up and drop-off points are not at the door 

but at centralized locations called checkpoints.  However, the MAST system differs from a 

checkpoint only system since it allows also for door-to-door requests. 

Heuristics to solve multi-vehicle problems have been proposed by Psaraftis (1986), 

Jaw et al. (1986), Bodin and Sexton (1986) and Desrosiers et al. (1988).  Min (1989) 

considers a vehicle routing problem with simultaneous pickups and deliveries that involves 

the definition of a capacity constraint.  Dumas et al. (1991) present a column generation 

scheme for optimally solving the Pickup and Delivery Problem with time windows.  Local 

search procedures are reported in Van Der Bruggen et al. (1993) and Healy and Moll 

(1995).  Madsen et al. (1995) present an insertion heuristic.  Ioachim et al. (1995) develop a 

clustering algorithm.  A simulated annealing procedure is introduced by Hart (1996).  A 

parallel insertion heuristic is proposed by Toth and Vigo (1997).  Savelsbergh and Sol 

(1998) propose three approximation algorithms derived from their branch-and-price based 

optimal algorithm.  Borndörfer et al. (1999) propose heuristics to solve a transportation 

problem of handicapped persons.  Tabu search techniques have been applied by Nanry and 

Barnes (2000), Landrieu et al. (2001) and Cordeau and Laporte (2003).  Teodorovich and 

Radivojevic (2000) use a fuzzy logic approach.  Li and Lim (2001) propose a metaheuristic.  

Lao and Liang (2002) present a two-phase method.  A parallel regret insertion heuristic is 

done by Diana and Dessouky (2003).  Exact procedures to solve small problems can be 

found in Ruland and Rodin (1997) and Lu and Dessouky (2003).  Feuerstein and Stougie 

(2001) investigate the best possible competitive ratio for an on-line single-server dial-a-ride 

problem; Uchimura et al. (2002) propose a hierarchical structure for demand responsive 

services.  A simulation model for paratransit services can be found in Fu (2002). 

Recent papers focus on the design of Dial-a-Ride services on a technologically 

advanced basis.  Dial (1995) proposes the implementation of a decentralized control 
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strategy for a fleet of vehicles.  Horn (2002b) develops an algorithm for the scheduling and 

routing of a fleet of vehicles that is embedded in a modeling framework for the assessment 

of the performance of a general public transport system with the latter being presented in 

Horn (2002a). 

 

3 System definition 

The MAST system analyzed in this paper consists of a single vehicle, initially 

associated with a predefined schedule along a fixed route, consisting of C checkpoints, 

identified by c = 1, 2, …, C; two of them are terminals located at the extremities of the 

route (c = 1 and c = C) and the remaining C-2 intermediate checkpoints are distributed 

along the route.  We consider a loop system, having the vehicle moving along the route 

back and forth between 1 and C.  A ride r is defined as a portion of the schedule beginning 

at one of the terminals and ending at the other one after visiting all the intermediate 

checkpoints; the vehicle’s schedule consists of R rides.  Since the end-terminal of a ride r 

corresponds to the start-terminal of the following ride r+1, the total number of stops at 

checkpoints is TC = (C-1)R+1.  Hence, the initial schedule’s array is represented by an 

ordered sequence of stops s = 1, …, TC and their scheduled departure time ts (with ts+1 > ts) 

are assumed to be constraints of the system which can not be violated.  We treat the 

departure times at the checkpoints as hard constraints since the checkpoints typically 

represent major transfer centers and late arrivals to these stops will result in passengers 

missing their connections. 

The service area is represented by a rectangular region defined by L*W, where L 

(on the x axis) is the distance between terminals 1 and C and W/2 (on the y axis) is the 

maximum allowable deviation from the main route in either side (see Figure 1). 
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Figure 1 – MAST system 

 

Customer types 

The MAST system can respond to four different types of requests: regular pick-up 

(P) and regular drop-off (D) representing customers picked up/dropped off at checkpoints; 

non-checkpoint pick-up (NP) and non-checkpoint drop-off (ND) representing customers 

picked up/dropped off at any location in the service area.  Hence, we can categorize the 

customers in four different types: 

 

• PD:  pick-up and drop-off at checkpoints 

• PND:  pick-up at checkpoint, drop-off at non-checkpoint 

• NPD:  pick-up at non-checkpoint, drop-off at checkpoint 

• NPND: pick-up and drop-off at non-checkpoints 

 

At any moment a customer may call in (or show up at checkpoints), specifying the 

locations of both pick-up and drop-off points, and the MAST algorithm will attempt to 

place the request in the schedule by means of an insertion procedure.  We assume that 

customers are immediately ready to be picked up at the moment of their request.  However, 

the system could easily handle reservations for future pick-ups by limiting the search for 

insertion in the portion of the schedule following the reservation time specified by the 

customer. 

L

W/2

W/2

r

r+1

1 C

x

y

2 3 c C-1
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While checkpoints are identified by s = 1,…,TC non-checkpoint customer request 

(NP or ND) are identified by s = TC+1,…,TS where TS represents the current total number 

of stops (including checkpoints and non-checkpoints).  The index α(s), s = 1,…,TS 

represents the current position of any stop s in the schedule.  The problem is then to 

determine the indices α(s), s = 1,…,TS and the departure times ts for non-checkpoint stops, 

s = TC+1, …,TS while not violating the given departure times ts for checkpoint stops s = 1, 

…,TC. 

 

Slack time 

In order to allow deviations from the main route to serve NP and ND requests 

between two consecutive checkpoints, identified by s and s+1, there needs to be a certain 

amount of slack time in the schedule.  Let ( )0
1, +ssst  be the slack given by the schedule and is 

computed as follows: 

 

 ( )0
1, +ssst  = ts+1 - ts - ds,s+1/bs - bts+1 s = 1, …, NC-1 (1) 

 

where bs is the vehicle speed, bts+1 is the time allowed at stop s+1 for passengers’ 

boardings and disembarkments and ds,s+1 is the distance between s and s+1.  As more pick-

ups and drop-offs occur off the base route, the slack is reduced.  Let sts,s+1 be the available 

slack that can be used to route the bus off the base route.  Initially, 

 

 sts,s+1 = ( )0
1, +ssst  s = 1, …, NC-1 (2) 

 

Idle policy 

We assume that the bus, driving from checkpoint s to s+1, follows a no-idle policy 

until all the requests in between them have been satisfied.  The unused slack time sts,s+1 

possibly still available when arriving to checkpoint s+1 is spent as idle time (note that 

while the bus is idle at s+1, new upcoming customer requests can still be inserted in the 

schedule before s+1 using sts,s+1 if feasible and best at the moment, meaning that the bus 

leaves s+1 to serve the new requests and comes back to s+1 before ts+1). 
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Arrival times 

While ts represents the scheduled departure time at stop s, we define t’ s as the arrival 

time at stop s.  Because of the idle policy, we have for non-checkpoint stops (s > TC) 

ts = t’s assuming that boarding and disembarking times are small and for checkpoint stops 

(s ≤ TC), ts � t’s and their initial values are: 

 

 t’ s+1 = ts+1 - sts,s+1 s = 1, …, NC-1 (3) 

 

Bus motion 

We assume that the bus follows a rectilinear motion, allowing the vehicle to move 

only along the horizontal or vertical direction; this is a good approximation of the real 

world, since buses ride along streets which often form a grid. 

Furthermore, whenever a horizontal or vertical direction can be equally chosen to 

reach the next scheduled stop, the bus prefers the one that keeps it closer to the central x 

axis of the service area.  This behavior guarantees a better service to the future expected 

demand under the assumption of uniform distribution of non-checkpoint requests. 

 

4 Control parameters 

The challenge of operating a MAST system mainly resides in defining the logic to 

best operate the vehicle under a dynamic and multi-criteria environment.  In particular we 

need to set the insertion feasibility rules for any given customer at any point in time 

because inserting a new request in the vehicle’s schedule even if feasible at that time, might 

not be best overall.  For this purpose we introduce the concept of “buckets” and make use 

of parameters that are a function of the slack time and the relative position of the new 

request with respect to the already scheduled stops. 

 

4.1 Buckets 

The MAST insertion algorithm does not explicitly add a constraint to limit the 

maximum allowable ride time of each customer as the Dial-a-Ride algorithms generally do.  
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Instead, it obtains a similar result working with “buckets”.  The underlying concept is that 

for PND and NPD type of customers one of the service points (either a P or a D checkpoint) 

is already part of the schedule; therefore, given the time of the customer request, the 

algorithm attempts to insert the corresponding ND and NP stops in the “vicinity” of the first 

occurrence of those checkpoints in the schedule’s array.  If not feasible, the algorithm 

checks for insertion in the “vicinity” of the following occurrences of the checkpoint of 

interest, one by one, till feasibility is found.  Clearly, this postponement causes a delay on 

the whole trip, but the ride time will be upper bounded. 

In order to define buckets, let’s consider the schedule’s array as shown in Table 1, 

illustrating the checkpoints only with their corresponding stop index s.  Each checkpoint c 

is scheduled to be visited by the bus a number of times, with different stop indices sk(c) 

(stop index of the kth occurrence of checkpoint c in the schedule), depending on how many 

rides (R) are planned. 

For each intermediate checkpoint c = 2, …, C-1 the indices sk(c), which identify 

them in the schedule, are computed by the following sequence: 

 

( ) ( )( ) ( ) ( ) ( ) ( )[ ]
�
�
�

�
�
� −−−−+−+−−+=

2

12111
111

cCC
kCcs

k

k  k = 1, …, R (4) 

 

For the terminal checkpoints 1 and C, since their frequency of occurrence is halved, 

the sequences are the following: 

 

 ( ) ( )( ){ }11211 −−+= kCsk  k = 1, …, 1+�R/2� (5) 

 ( ) ( )( ){ }112 −−+= kCCCsk  k = 1, …, 	R/2
 (6) 

 

Definition: For every checkpoint c, we define a bucket of c, in general, as a portion 

of the schedule delimited by two successive occurrences of c, namely all the stops s in the 

schedule’s array such that α[sk(c)] ≤ α(s) < α[sk+1(c)]  for any allowable k, as described in 

equations (4), (5) and (6). 

 

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



 10

 

Table 1 – Schedule’s array and buckets 

ride s Checkpoints c 
1 1 
2 2 
3 3 
… … 
c c 

… … 
C-1 C-1 

 
 
 
1 

C C 
C+1 C-1 
… … 

2(C-1)+1-(c-1) c 
… … 

2C-2 2 

2 

2C-1 1 
2C 2 
… … 

2(C-1)+1+(c-1) c 
… … 

3 

3C-2 C 
… … … 

r(C-1)+1-(c-1) c 
… … r 

r(C-1)+1 1 
… … 

r(C-1)+1+(c-1) c 
… … 

r+1  

(r+1)(C-1)+1 C 
… … … 
R TC=R(C-1)+1 1 or C 

 

The buckets’ definition for NPND type customers needs to be revised since they 

don’t rely on checkpoints for pick-ups and drop-offs; so we identify the buckets with the 

rides.  More formally, let’s characterize the sequence representing the occurrences of any 

terminal checkpoint (c = 1 or C): 

 

 ( ) ( )( ){ }111\1 −−+= kCCsk  k = 1, …, R+1 (7) 

 

1st bucket of c=1 

 

bucket of c=2 

another bucket of c=2 
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We have that, for NPND type customers, a bucket represents all the stops s such that 

α[sk(1\C)] ≤ α(s) < α[sk+1(1\C)] for any allowable k as described in equation (7). 

 

4.2 Usable slack time 

The slack time is a crucial resource needed to serve customers.  When this resource 

is scarce, the system is not able anymore to properly satisfy new requests and it is forced to 

postpone or reject them.  Therefore, a MAST service needs to be particularly careful about 

accepting customer requests that require a lot of slack time consumption preventing future 

requests from being fully satisfied.  In fact, an insertion that appears to be good at the time 

of its placement in the schedule may very well not be so if we consider future expected 

customer requests.  We therefore need to define a parameter that properly controls the 

consumption of slack time. 

sts,s+1 represents the current available unused slack time  between two consecutive 

checkpoints s and s+1; while ( )0
1, +ssst  is the slack time initially available before any insertion 

has been performed.  We define the usable slack time u
ssst 1, +  as the maximum amount of 

slack time that any customer request is allowed to consume for its insertion between s and 

s+1.  It represents an upper bound on the usable amount of slack time and it prevents a 

single insertion from consuming too much of it.  u
ssst 1, +  is defined as a function of the future 

expected demand between s and s+1 and is not related to the actual unused slack time sts,s+1 

and therefore u
ssst 1, +  can be greater or lower than sts,s+1 depending on the circumstances.  As 

we will see in the insertion feasibility section, a request will be allowed to consume the 

minimum value among u
ssst 1, +  and sts,s+1 for its insertion. 

We assume that the demand rate λ (# of requests per unit time in the service area 

L*W) of non-checkpoint’s requests (NP and ND) is uniformly distributed in the service 

area and constant over time.  The time interval between two checkpoints s and s+1 is 

defined by ts+1-ts, while the ratio between the area covered by the segment of the route from 

s and s+1 and the total service area is given by 
L

1+− ss xx
 (where xs and xs+1 are the x 

coordinate values of s and s+1 with respect to the service area). Consequently, the expected 
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demand between s and s+1 (total # of insertion requests), Λs,s+1, is estimated as follows (see 

Figure 2): 

 

 Λs,s+1 = λ
L

1+− ss xx
(ts+1-ts) (8) 

Figure 2 – Portion of service area covered by the segment between s and s+1 

 

As soon as the vehicle departs from s at ts, the expected residual demand drops 

linearly until reaching the zero value at ts+1.  Hence, the expected residual demand as a 

function of the current clock time tnow, 
( )nowt

ss 1, +Λ , may be expressed as (see Figure 3): 

 

 ( )

�
�
�

��
�

�

>

≤≤��



�
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�

�

−
−−Λ
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+
+

+

+

+

1

1
1

1,

1,

1,

                                          0

              1
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Figure 3 – Expected residual demand between s and s+1 as a function of tnow 

L

W

x

s s+1

xs+1xs

Λs,s+1

1 C

tnow

( )nowt
ss 1, +Λ

Λs,s+1

ts ts+1

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



 13

We define the parameter πs,s+1 as a function of the expected demand as follows: 

 

 
( )

( )nowt
ss

ss

ss
ss 1,

1,

0
1,

1,

1
1 +

+

+
+ Λ��




�
�
�
�

�

Λ
−

+=
π

π  with 0 ≤ ( )0
1, +ssπ  ≤ 1 (10) 

 

Since 0 ≤ ( )nowt
ss 1, +Λ  ≤ Λs,s+1, we have that ( )0

1, +ssπ  ≤ πs,s+1 ≤ 1 and ( )0
1, +ssπ  can be set accordingly.  

We finally define the usable slack time, ussst 1, + , as follows: 

 

 ( )0
1,1,1, +++ = ssss

u
ss stst π  (11) 

 

If the residual expected demand ( )nowt
ss 1, +Λ →0, then πs,s+1→1 and u

ssst 1, + → ( )0
1, +ssst .  Whereas, 

when ( )nowt
ss 1, +Λ  attains its maximum (Λs,s+1), πs,s+1 reaches its minimum value, ( )0

1, +ssπ , and so 

does u
ssst 1, +  = ( )0

1, +ssπ ( )0
1, +ssst . 

Combining equations (9), (10) and (11) we finally derive the expression for the 

usable slack time, u
ssst 1, + , as a function of tnow (see Figure 4): 

 

( ) ( )

( )( ) ( )

( )�
�

�

�
�

�

�

>

≤≤�
�



�
�

	
��



�
��
�

�

−
−−−+

<

=

++

++
+

+

++

+

1
0

1,

1
0

1,
1

0
1,

0
1,

0
1,

1,

                                                      

            111

                                               

snowss

snowsss
ss

snow
ss

snowssss

u
ss

ttst

tttst
tt

tt

ttst

st π

π

 (12) 

Figure 4 – Usable slack time 
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( )0
1, +ssst

( ) ( )0
1,

0
1, ++ ssss stπ

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



 14

Let’s now consider a non-checkpoint request q located at the edge of the service 

area, such that yq = 0 or yq = W and xs ≤ xq ≤ xs+1 and let’s assume that the schedule 

between s and s+1 is empty (no previously inserted stops).  In order to be inserted, the q 

request would require an amount of slack time stq given by the time needed by the vehicle 

to deviate from the x axis, serve the q request and come back to the x axis (stq = W/bs+btq).  

Since the minimum amount of usable slack time from equation (12) is given by 

u
ssst 1, +  = ( )0

1, +ssπ ( )0
1, +ssst , we need to have u

ssst 1, +  ≥ stq to prevent the q request from being 

rejected.  Hence we define: 

 

 ( )min0
1, +ssπ  = (W/bs+btq)/

( )0
1, +ssst  (13) 

 

as the minimum value of ( )0
1, +ssπ  that guarantees every non-checkpoint request q to be 

considered for insertion between s and s+1 with the schedule empty, regardless of the 

location of q as long as xs ≤ xq ≤ xs+1. 

Setting ( )0
1, +ssπ  < ( )min0

1, +ssπ  would prevent the algorithm from working properly, because 

some customers would be rejected not because of system saturation or end of service, but 

because of improper parameter setting.  Clearly, setting ( )0
1, +ssπ  = 0 would result in having 

u
ssst 1, +  = 0 for tnow < ts, preventing any requests before ts from being considered for 

insertion.  On the contrary, ( )0
1, +ssπ  = 1 causes u

ssst 1, +  = ( )0
1, +ssst  at any time and customers 

requests would have no limit on the amount of slack time allowed to be consumed for their 

insertion. 

A proper value of ( )0
1, +ssπ  in between ( )min0

1, +ssπ  and 1 allows the system to control the 

consumption of slack time.  Any request occurring before ts can use at most the minimum 

value of u
ssst 1, +  = ( )0

1, +ssπ ( )0
1, +ssst  because there is an expected demand of future customers that 

should be properly served with the remaining slack time.  Whereas, if a customer request 

occurs towards the end of the ride from s to s+1, it is allowed to consume a bigger portion 

of the slack time until a maximum of ( )0
1, +ssst  because the chance of having additional 

requests before the bus reaches the next checkpoint s+1 is very low. 
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4.3 Backtracking distance 

The insertion procedure can cause the vehicle to drive back and forth with respect to 

the direction of a ride r, not only consuming the extra slack time, but also having a negative 

impact on the customers already onboard, which may perceive this behavior as an 

additional delay.  Therefore, we limit the amount of backtracking in the schedule.  The 

backtracking distance indicates how much the bus drives backwards on the x axis while 

moving between two consecutive stops to either pick up or drop off a passenger at a non-

checkpoint stop with respect to the direction of the current ride.  More formally, as shown 

in Figure 5, given any two consecutive stops identified by a and b [such that 

α(a)+1 = α(b)] and the vector bad ,
ˆ  representing the distance from a to b, the backtracking 

distance bda,b is defined as the negative component of the projection of bad ,
ˆ  along the unit 

vector rd̂ , representing the direction of the current ride r (1→C or vice versa, parallel to the 

x axis) as follows: 

 

 bda,b = −min(0, rd̂ ⋅ bad ,
ˆ ) (14) 

 

Figure 5 – Backtracking distance 

 

The backtracking parameter (BACK > 0) is defined as the maximum allowable 

backtracking distance that the bus can ride between any two consecutive stops.  BACK is a 

parameter and can be set accordingly; clearly with BACK ≥ L any backtracking is allowed. 

 

rd̂rd̂

bda,b>0 bda,b=0

bad ,
ˆ

bad ,
ˆ
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5 Algorithm description 

5.1 Feasibility 

While evaluating a customer request, the algorithm needs to determine the 

feasibility of the insertion of a new stop (let’s identify it by s =  q) between any two 

consecutive stops a and b already scheduled.  The extra time needed for the insertion is 

computed as follows: 

 

 ∆ta,q,b = (da,q+dq,b-da,b)/bs - btq (15) 

 

Let checkpoints m and m+1 be the checkpoints prior and after stops a and b in the 

schedule.  The algorithm computes also the backtracking distances bda,q and bdq,b by 

equation (14).  Finally, it is feasible to insert q between a and b if: 

 

 ∆ta,q,b ≤ min(stm,m+1, 
u

mmst 1, + ) (16) 

 bda,q ≤ BACK (17) 

 bdq,b ≤ BACK (18) 

 

The algorithm doesn’t need to check feasibility with respect to the bus capacity because we 

assume it to be infinite. 

Figure 6 – Insertion feasibility of q 

 

a b

q
da,q

da,b

dq,b

m m+1
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5.2 Cost function 

When searching for the best insertion among the feasible ones, the algorithm 

computes a COST for each of them and selects the one with the minimum value.  Let’s 

assume that the insertion of a stop q between a and b is feasible and we need to compute its 

COST.  The system’s entities affected by an insertion are: 

 

• The customer requesting the insertion, in terms of how long the ride time is. 

• The passengers already onboard and waiting to be dropped off, in terms of 

how much longer they have to stay onboard. 

• The previously inserted customers in the schedule waiting to be picked up at 

the NP stops, in terms of how much longer their pick-up time is delayed and 

also in terms of how much their expected ride time changes. 

• The vehicle, in terms of how much extra miles it has to drive. 

 

Thus, the algorithm computes the following quantities: 

 

• ∆PT: the sum over all passengers of the extra ride time, including the ride 

time of the customer requesting the insertion. 

• ∆PW: the sum over all passengers of the extra waiting time at the already 

inserted NP stops. 

 

Finally, the cost function is defined as: 

 

 COST = w1*∆PT + w2*∆PW + w3*∆ta,q,b (19) 

 

where w1, w2 and w3 are the weights, which can be modified as needed to emphasize one 

factor over the others.  ∆ta,q,b corresponds to the consumption of the slack time (the resource 

needed by the system to serve more customers).  During heavy demand periods, we should 

assign a higher value to this scarce resource by increasing w3 with respect to w1 and w2.  In 
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contrast, during low demand periods, the opposite is true and the COST function should 

emphasize more the service quality for the customers rising w1 and w2 over w3. 

 

5.3 Insertion procedure 

PD type 

PD type requests do not need any insertion procedure since both pick-up and drop-

off points are checkpoints and they are already part of the schedule.  However, once the PD 

type customers are onboard, they are important in evaluating the COST of any other 

insertion. 

 

PND type 

PND type customers need to have their ND stop q inserted in the schedule.  The 

algorithm checks for insertion’s feasibility in the buckets of the P checkpoint.  Since the 

ND stop can not be scheduled before P, the first bucket to be examined is the one starting 

with the first occurrence of P following the current position of the bus (bucket delimited by 

sk’(P) and sk’+1(P) with ( ) ( ) nowPsk
k

tttsPsk
k

≥= ..,min' ).  Among the feasible insertions 

between all pairs of consecutive stops a, b in the first bucket, the algorithm selects the one 

with the minimum COST and then stops.  The customer is therefore scheduled to be picked 

up at sk’(P) and dropped off at the ND inserted stop q.  If no feasible insertions are found in 

the first bucket, the algorithm repeats the procedure in the second bucket (assuming that the 

customer will be picked up at the beginning of the second bucket corresponding to the 

following occurrence of P, sk’+1(P)).  The process is repeated bucket by bucket until at least 

one feasible insertion is found. 

 

NPD type 

NPD type customers need to have their NP stop q inserted in the schedule.  

Similarly, the algorithm checks for insertion’s feasibility in the buckets of the D 

checkpoint.  The first bucket to be examined is the one delimited by the current position of 

the bus (xb, yb) and the first occurrence of D following the current position of the bus (sk’(D) 
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with ( ) ( ) nowDsk
k

tttsDsk
k

≥= ..,min' ' ).  In general, (xb, yb) doesn’t correspond to a stop.  

Therefore, the first pair of points, between which the algorithm checks for feasibility, is 

represented by (xb, yb) and the first stop to be visited afterwards, as shown in Figure 7.  

Among the feasible insertions in the first bucket, the algorithm selects the one with the 

minimum COST and then stops.  The customer is therefore scheduled to be picked up at the 

inserted NP stop q and dropped off at sk’(D).  If no feasible insertions are found in the first 

bucket, the algorithm repeats the procedure in the second bucket (forcing the customer to 

be dropped off at the end of the second bucket, corresponding to the following occurrence 

of D, sk’+1(D)).  This process is repeated bucket by bucket until at least one feasible 

insertion is found. 

Figure 7 – Insertion from current bus position 

 

NPND type 

A NPND type customer requires the insertion of two new stops q and q’; therefore 

the insertion procedure will be performed by a O(TS2) procedure, meaning that for each 

feasible insertion of the NP stop q, the algorithm checks feasibility for the ND stop q’. A 

NPND feasibility is granted when both NP and ND insertions are simultaneously feasible.  

The search for NPND feasibility is performed with the additional constraint of having q 

scheduled before q’. 

Recall that buckets correspond to the rides for a NPND type customer.  The search 

for NPND feasibility is performed in at most two consecutive buckets meaning that when 

checking for NP insertion feasibility in bucket i and i+1 , the algorithm looks for ND 

insertion feasibility only in bucket i and i+1. 

The algorithm starts checking the NPND feasibility in the first bucket delimited by 

the current position of the bus (xb, yb) and the end of the current ride r.  This is the first 

α(s) (xb,yb)

q

α(s)+1
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occurrence in the schedule of one of the terminal checkpoints s = 1 or s = C, namely 

( ) ( ) ( ) nowCsk
k

k tttsCsCs
k

≥= \1' ..,\1min\1 .  Among all feasible NPND insertions in the first 

bucket, the algorithm selects the one with the minimum COST.  If no NPND feasibility is 

found, the algorithm will then check pairs of two consecutive buckets at a time, increasing 

the “checking-range” by one bucket at each step (buckets 1/2, then buckets 2/3, …, i/i+1 , 

etc.).  While checking buckets i/i+1 , we already know that NPND insertion is infeasible in 

bucket i (because it has been already established before in the procedure while checking 

buckets i-1/i).  Therefore, while NP insertion feasibility needs to be considered in both 

buckets (since NPND insertion infeasibility in bucket i doesn’t prevent NP insertion to be 

feasible in i), ND insertion needs to be checked only in bucket i+1 .  The procedure will 

continue till at least one NPND feasible insertion is found. 

 

Rejection policy 

The general assumption while performing the insertion procedure is a no-rejection 

policy from both the MAST service and the customers.  Thus, the algorithm attempts to 

insert the customer requests checking if necessary the whole existing schedule bucket by 

bucket, and rejection may occur only if there is no feasibility at all.  It may occur, for 

example with a very high demand rate, or when a customer request arrives towards the end 

of the service.  On the other hand, the customers are assumed to never reject the insertion 

proposed by the algorithm and there is no negotiation between the MAST system and the 

customers. 

 

5.4 Update procedure 

Once a minimum COST feasible insertion is selected, a new stop q (either a NP or a 

ND request) has been successfully scheduled between two points a and b in a portion of the 

schedule delimited by checkpoints m and m+1, and the variables of the system need to be 

updated. 

The slack time will be updated as follows: 

 

 stm,m+1 = stm,m+1 - ∆ta,q,b (20) 

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



 21

The departure and arrival times will also be updated (delayed) as follows: 

 

 ts = ts + ∆ta,q,b ∀s s.t. α(s)∈[α(b), α(m+1)) (21) 

 t’ s = t’ s + ∆ta,q,b ∀s s.t. α(s)∈[α(b), α(m+1)] (22) 

 

Since the departure times ts of checkpoints (s ≤ TC) are constraints of the system 

and act as “time-barriers”, all the stops that are not in the portion of the schedule where the 

insertion takes place (between m and m+1) are not affected.  We can therefore identify six 

different cases: 

• Customers having both pick-up and drop-off stops scheduled before q are 

not affected by the insertion. 

• Customers having their pick-up stop before q and their drop-off stop in 

between q and m+1 will have their ride time increased because their drop-

off stop will be delayed as given by equation (22). 

• Customers having their pick-up stop before q and their drop-off stop after 

m+1 will not be affected by the insertion because the departure time tm+1 

will remain unchanged. 

• Customers having both their pick-up and drop-off stops in between q and 

m+1 will have both of them delayed by the same amount as given by 

equations (21) and (22).  Therefore, their waiting time at the pick-up stop 

will be increased but their ride time will remain unchanged. 

• Customers having their pick-up stop in between q and m+1 and their drop-

off stop after m+1 will have their waiting time at the pick-up stop increased 

as given by equation (21) and their ride time decreased by the same amount 

because their drop-off stop will not be affected. 

• Customers having both their pick-up and drop-off stops after m+1 will not 

be affected. 
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Time windows 

The algorithm provides customers at the time of the request with time windows for 

their pick-up and drop-off locations.  To do so, it computes the earliest departure time from 

q, etq, as follows: 

 

 etq = ta + da,q/bs + btq (23) 

 

where ta represents the current departure time from stop a.  Also the departure time of q is 

initialized likewise: 

 

 tq = ta + da,q/bs + btq = etq (24) 

 

It can easily be shown that etq is a lower bound for any further updates of tq. 

The algorithm then computes the latest departure time from q, ltq, as follows: 

 

 ltq = etq + stm,m+1 (25) 

 

We prove that ltq is an upper bound for tq by the following contradiction argument.  

Let’s use the superscript β (with β = 0, …, f) to indicate the βth update of a variable and 

suppose that tq
(f) > ltq, we have tq

(f)-tq
(0) > ltq-tq

(0).  We also know by equation (21) that: 

 

tq
(f)-tq

(0) = (tq
(f)-tq

(f-1))+…+(tq
(β)-tq

(β-1))+…+(tq
(1)-tq

(0))= 

             = ∆tf+…+ ∆tβ+…+∆t1 = �
=

∆
f

k
kt

1

 (26) 

 

and from equations (24) and (25), ltq-tq
(0) = ltq-etq = stm,m+1, but this would imply 

�
=

∆
f

k
kt

1

 > stm,m+1, meaning that the sum of the extra time needed for insertions after the 

insertion of q had exceeded the total slack time available after the insertion of q and this is a 

contradiction since the feasibility check would have prevented this from happening.  
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Therefore equation (25) says that future possible insertions between m and q will delay tq to 

a maximum total amount of time bounded by the currently available slack time. 

In a similar fashion, the earliest and latest arrival times, et’q and lt’ q, are computed.  

As a result, the customer, once accepted, is provided with etq, ltq, et’q and lt’ q knowing that 

their actual times tq and t’q will be bounded by these values: 

 

 etq ≤ tq ≤ ltq (27) 

 et’q ≤ t’q ≤ lt’ q (28) 

 

While a P request has etP = tP = ltP because the departure time from a checkpoint is 

a constant in a MAST system, a D request will have et’D ≤ t’D ≤ lt’ D.  Clearly NP and ND 

requests will also have etNP ≤ tNP ≤ ltNP and et’ND ≤ t’ND ≤ lt’ ND. 

 

6 Experimental results 

In this section we discuss the results obtained by simulation analysis.  The target is 

to show that the insertion heuristic developed in this paper can be a used as an efficient 

scheduling tool for real MAST systems.  We test its performance on a simulation model of 

the actual MAST service represented by MTA Line 646 in Los Angeles.  In order to 

perform this task, we first need to define the MAST system’s performance measures. 

 

6.1 Performance measures 

We define the following performance parameters for a MAST system: 

 

• PT: average ride time per passenger 

• PW: average extra waiting time (tNP - etNP) over NP requests only 

• M: total miles driven by the bus 
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These three indicators are directly related to the corresponding terms of the COST function 

in Equation (19): ∆PT, ∆PW, ∆ta,q,b.  Thus, we can similarly define the overall performance 

Z of a MAST system as: 

 

Z = w1*PT*NCT + w2*PW*NCNP + w3*M/bs (29) 

 

where NCT and NCNP stand respectively for the total number of customers and the total 

number of NP customer requests (NPD and NPND types) served by the system.  Z is in 

time units. 

In addition, let’s define: 

 

• PI: average time interval between request/show up and earliest pick-up 

time (etP or etNP) per passenger 

• PST: percentage of the total initial slack time (= ( )�
−

=
+

1

1

0
1,

TC

s
ssst ) consumed 

 

Given a total demand rate θ (customers/hour), we define the saturation level as the 

maximum demand that a system configuration can satisfy without becoming unstable.  This 

level can be estimated by looking at the PI values.  Given that the demand is uniform over 

time, for systems well below their saturation level, the PI values should be around half the 

headway of the system.  A slightly larger value of PI, but constant over the simulation time, 

shows that the system is near the saturation level, but still below it.  Even if a few 

customers have to wait longer to be picked up due to temporary congestions created by the 

randomness of the demand, the system on average is stable.  If instead the PI value 

increases over the simulation time, then the system is unstable and the demand rate is above 

the saturation level.  An indication of how much the demand rate is below the saturation 

level is given by the PST; values around 90% indicate that the demand rate is more or less 

at saturation level.  In addition, since the slack time consumption is directly proportional to 

the miles driven, the PST and M values are related to each other.  Therefore, bigger values 

of M also indicate a higher level of saturation. 
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6.2 Algorithm performance 

As earlier noted, a MAST service already exists in San Pedro in Los Angeles 

County, Line 646.  San Pedro is one of Los Angeles County's busiest commercial hubs, 

consisting of several warehouses, factories and offices.  Bus lines offer regular fixed-route 

service in the area during the daytime.  However, for safety reasons, employees of local 

firms working on night shifts have been finding it extremely inconvenient to walk to and 

wait at a bus stop.  Therefore, MTA Line 646 offers a MAST service during nighttime, 

transporting passengers between one of the business areas in San Pedro and a nearby bus 

terminal. 

The MAST system represented by Line 646 consists of a single vehicle covering a 

service area with L = 10 miles and W = 1 mile, with two terminal checkpoints and one 

intermediate checkpoint located in the middle.  The duration of each ride is 30 minutes and 

the headway is 1 hour.  The service operates for 4.5 hours (9 rides) each night.  Given that 

bs = 25 miles/hour, the system has very little slack time (( )0
1, +ssst  = 2.5 minutes, for s = 1, …, 

TC-1; therefore about 6 minutes per ride), allowing very few insertions of non-checkpoint 

requests, but this is justified by the very low actual demand (4-5 customers/hour, most of 

them being of type PND and NPD).  These “light” conditions allow the bus operator to 

easily make all the decisions concerning accepting/rejecting customer requests and routing 

the vehicle since the system needs to deal with only 2-3 insertion requests per ride. 

MTA is interested in testing the MAST concept for higher demand levels.  

However, at the current slack level, the system will not be able to accommodate more 

demand.  Therefore, in order to evaluate the performance of the insertion algorithm for the 

higher demand cases we perform the simulation experiments assuming a larger slack time.  

A summary of the parameters values that are used in the experiments are shown in Table 2. 

 

 

 

 

 

 

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



 26

Table 2 – System parameters 

L 10 miles 
W 1 mile 
C 3 
ds,s+1  (s = 1, …, TC-1) 5 miles 
ts+1 - ts (s = 1, …, TC-1) 25 min (t1 = 0) 
bs 25 miles/hour 
bts   (s = 1, …, TS) 18 sec 
w1 / w2 / w3 0.25 / 0.5 / 0.25 

 

From equation (1) we compute the values of the initial slack times ( )0
1, +ssst  = 12.7 minutes 

(s = 1, …, TC-1) that are about 50% of the time intervals between two consecutive 

checkpoints’ departure times (ts+1 - ts = 25 minutes). 

In setting the COST function’s weights, we assume that customers perceive the 

waiting time at stops (w2) with more discomfort than the ride time on the bus (w1) and that 

slack time consumption (w3) and passengers’ ride time (w1) are equally weighted. 

Given a total demand rate θ (customers/hour) constant over time, we also assume 

that the customer types are distributed as shown in Table 3: 

 

Table 3 – Customer type distribution 

Type PD PND NPD NPND 
% 10% 40% 40% 10% 

 

The above distribution assumes that most of the customers need to be transported 

from a checkpoint to a desired location (home/office) and vice versa (PND and NPD types) 

as actually is the case for Line 646.  We further assume that the checkpoint requests (P and 

D) are uniformly distributed among the C checkpoints and that non-checkpoint requests 

(NP and ND) are uniformly distributed in the service area. The simulation is run for 50 

hours. We verified that this length of simulation time was sufficiently long to have all the 

performance parameters converge to their steady-state values for stable systems. According 

to the parameter values shown in Table 2, the total number of rides R = 60. 

We first perform a set of runs setting the control parameters BACK = L and 

( )0
1, +ssπ  = 1 (for all s = 1,…,TC-1) allowing any backtracking and any slack time 
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consumption if available, thus giving the most freedom to the algorithm when checking for 

insertion feasibility.  At these parameter settings (configurations A) we seek the saturation 

level of the system, by examining the PI and PST values for different values of the demand 

θ.  The results are shown in Table 4. 

 

Table 4 – Saturation level for configurations A 

Configuration A1 A2 A3 
θ (customers/hour) 15 20 25 
BACK (miles) L L L 

( )0
1, +ssπ  s = 1, …, TC-1 1 1 1 

PI (min) 56.52 61.67 236.74 
PST (%) 81.3% 91.3% 98.9% 
saturation level? below yes above 
PW (min) 1.07 1.23 1.75 
PT (min) 23.86 25.86 30.39 
M (miles) 1012.7 1051.4 1083.8 

 

The findings show that the saturation level is around θ = 20 customers/hour (configuration 

A2).  While A1 is a stable system relatively far from saturation (PST = 81.3%), A2 is right 

at the boundary because the PI value is higher than half the headway (50 minutes), but it 

doesn’t increase over time.  Hence, the system is stable, but since the slack time 

consumption is very high (PST = 91.3%), it is near the demand limit.  Anything above 

θ = 20 would lead to system instability as shown by the results from A3, where the PI value 

is very high and keeps increasing with the simulation run time and the PST is close to 

100%. 

Therefore, by allowing more slack time in the schedule (( )0
1, +ssst  = 12.7 minutes 

instead of 2.5, for s = 1, …, TC-1) and setting BACK = L and ( )0
1, +ssπ  = 1 (configurations A), 

MTA Line 646 would be able to serve a demand θ with up to 20 customers/hour assuming 

the customer type distribution of Table 3. 

Now, keeping the demand at the saturation level (configuration A2), we want to 

observe the effect of modifying the usable slack time u
ssst 1, + .  For this purpose, maintaining 

BACK = L, we vary the values of ( )0
1, +ssπ  (for all s = 1, …, TC-1) in the range from 1 to 
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( )min0
1, +ssπ  (configurations B) to observe the effect of this control parameter.  We compare the 

performances of each case by means on the object function, Z, as defined in equation (29).  

The simulation run time is again 50 hours.  Each configuration is tested with exactly the 

same demand using CNR (Common Random Numbers).  The results are summarized in 

Table 5.  From equation (13), ( )min0
1, +ssπ  is approximately equal to 0.22. 

 

Table 5 – Effect of ( )0
1, +ssπ  - configurations B 

Configuration B1 = A2 B2 B3 B4 B5 B6 
θ (customers/hour) 20 20 20 20 20 20 
BACK (miles) L L L L L L 

( )0
1, +ssπ  s = 1, …, TC-1 1 0.75 0.5 0.4 0.3 ( )min0

1, +ssπ =0.22 

PI (min) 61.67 55.87 54.59 51.56 52.26 51.60 
PST (%) 91.3% 87.4% 82.3% 79.2% 76.6% 72.0% 
saturation level? yes below below below below below 
PW (min) 1.23 1.15 1.25 1.32 1.41 1.37 
PT (min) 25.86 24.68 24.13 23.09 22.60 22.76 
M (miles) 1051.4 1021.7 989.0 968.2 951.5 921.7 
Z 7149 6987 6853 6624 6533 6551 
 

The figures reveal the positive effect of decreasing ( )0
1, +ssπ  from 1 to almost ( )min0

1, +ssπ .  

All the performance parameters significantly improve their values, with the exception of 

PW, showing initially a progress, but then a progressive worsening.  Also the Z values 

gradually drop and reach their minimum value with configuration B5 at ( )0
1, +ssπ  ≅ 0.3, 

slightly greater than ( )min0
1, +ssπ .  Due to the increased efficiency of the algorithm, all the 

configurations drop well below their saturation levels.  Note that configuration B6 has 

lower PST and M values, indicating a better performance in terms of the slack time 

consumption, but the overall performance Z shows a worsening of the service quality with 

respect to B5.  These results show the benefit of controlling the consumption of slack time 

and saving some of it for future insertions. 

Now, starting from configuration B5, we’d like to observe the effect of limiting the 

backtracking distance.  We perform another set of simulations (configurations C), keeping 
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θ = 20 and ( )0
1, +ssπ  = 0.3 and varying the BACK parameter from L to 0.  The results are 

shown in Table 6. 

 

Table 6 – Effect of BACK - configurations C 

Configuration C1 = B5 C2 C3 C4 C5 C6 C7 C8 
θ (customers/hour) 20 20 20 20 20 20 20 20 
BACK (miles) L 1.5 0.8 0.5 0.3 0.2 0.1 0 

( )0
1, +ssπ  s = 1, …, TC-1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

PI (min) 52.26 52.26 52.35 51.70 52.19 52.23 51.28 51.84 
PST (%) 76.6% 76.6% 75.8% 74.2% 72.8% 72.4% 71.2% 70.9% 
saturation level? below below below below below below below below 
PW (min) 1.41 1.41 1.39 1.38 1.37 1.37 1.42 1.43 
PT (min) 22.60 22.60 22.62 22.46 22.34 22.28 22.36 22.94 
M (miles) 951.5 951.5 946.4 936.1 927.2 924.2 916.8 914.5 
Z 6533 6533 6528 6478 6435 6419 6451 6596 

 

There are no changes in the performance by lowering the value of the BACK 

parameter from L (configuration C1) down to about 1.5 miles (C2).  This means that in the 

simulation there are no cases of an insertion with a backtracking distance bigger than 1.5 

miles.  Therefore, setting BACK to a value larger than 1.5 has no effect on the schedule.  

On the contrary, improvements in all the performance measures can be progressively seen 

in cases C3, C4, C5 and C6 (BACK = 0.8, 0.5, 0.3 and 0.2) while C7 and C8 (BACK = 0.1 

and 0) show better values for PST and M, but the overall performance Z slightly worsens 

due to the increasing values of PW and PT.  All the cases are well below their saturation 

level and the best configuration according to Z is found by setting BACK = 0.2 miles, 

corresponding to case C6.  These experiments illustrate the positive effect of limiting to a 

certain degree the amount of backtracking that the bus is allowed to do. 

Case C6 represents a better configuration than A2 with respect to the overall 

performance Z and almost all the other parameters (with the exception of PW, slightly 

increased).  In particular, the improved efficiency of the algorithm causes the M and PST 

values to drop and the system is now well below saturation.  We therefore look for the new 

saturation level for these more efficient parameter settings by performing another set of 
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runs (configurations D, see Table 7) starting from configuration C6 and progressively 

increasing θ. 

 

Table 7 – New saturation level - configurations D 

Configuration D1 = C6 D2 D3 
θ (customers/hour) 20 25 30 
BACK (miles) 0.2 0.2 0.2 

( )0
1, +ssπ  s = 1, …, TC-1 0.3 0.3 0.3 

PI (min) 52.23 55.98 77.58 
PST (%) 72.4% 86.8% 95.9% 
saturation level? below yes above 
PW (min) 1.37 1.72 1.92 
PT (min) 22.28 23.93 29.00 
M (miles) 924.2 983.4 1020.6 

 

As done for configurations A, we can estimate the saturation level for 

configurations D by looking at the stability of the PI value over the simulation time.  The 

figures show that θ = 25 customer/hour (D2) approximately represent the limit for the 

system.  Anything above this value would cause instability.  Therefore, the adjustments 

made on the control parameters allow the insertion heuristics to handle a demand rate 25% 

larger than the initial configuration A2. 

 

7 Conclusions 

In this paper we presented an insertion heuristic for scheduling Mobility Allowance 

Shuttle Transit (MAST) services.  The algorithm allows customers to place a request, and 

once accepted, provides them with time windows for both pick up and drop off points.  Due 

to the dynamic nature of the environment, the algorithm makes effective use of a set of 

control parameters to reduce the consumption of slack time and enhance the algorithm 

performance.  The results of simulations performed on a system representing the existing 

MTA Line 646 of Los Angeles show the efficacy of the algorithm and its control 

parameters, and demonstrate that the algorithm can be used as an effective method to 

automate scheduling of this line and other similar services. 
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Future research on MAST systems could focus on finding lower bounds on the cost 

function through exact mathematical approaches, improving the solution by introducing 

local search techniques, studying the system under different demand distributions and 

stochastic environments, finding the optimal slack time for a given demand distribution, 

developing heuristics for the multiple bus MAST system to handle day-time heavy demand 

environments and comparing MAST systems to conventional transportation services like 

fixed-route bus or DRT. 
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Appendix 

Notation 

r [1, …, R]    rides’ index 
c [1, …, C]    checkpoints’ index 
s [1, …, TC, …, TS] stops’ index 
sk(c) [1, …, TC]    stops’ index of the kth occurrence of c 
α(s) [1, …, TS]    schedule's sequence index 
L, W length, width of service area 
R, C total # of rides, total # of checkpoints 
TS, TC total # of stops, total # of stops at checkpoints 
(xb, yb) current position of the bus 
tnow current time 
bts boardings/disembarkment time at s 
bs bus speed 
ts, ts’ departure/arrival times 
ets, et’s earliest departure, arrival time at s 
lts, lt’ s latest departure, arrival time at s 

rd̂  direction of r 

ds,s’, ',
ˆ

ssd  scalar and vector distance between s and s’ 

bds,s’ Backtracking distance between s and s’ 
BACK Backtracking parameter 
sts,s+1 slack time between checkpoints s and s+1 

u
ssst 1, +  slack time usable between checkpoints s and s+1 

COST cost function 
wi cost weights 
∆PT total extra ride time 
∆PW total extra waiting time 
∆ts,s*,s’ extra time needed to insert s* between s and s’ 
PI average time interval between call/show-up and etP/etNP 
PST % of total initial slack time used 
PT average ride time 
PW average extra waiting time over NP requests 
M total miles driven 
Z overall performance 
θ total demand rate in service area 
λ non-checkpoints’ demand rate in service area 
Λs,s+1 expected demand in sector between checkpoints s and s+1 
πs,s+1 slack time parameter 
β variables’ update index 
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