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In this paper, we develop an inse@eurisﬂc femgcheduling Mobility Allowance Shuttle
Transit (MAST) services, a e con@t merges the flexibility of Demand
Responsive Transit (DRT) s t operability of fixed-route bus systems.

s with the |
A MAST system allows buses te deviate e fixed path so that customers within the
service area may be4pi up or @rg @ off at their desired locations. Such a service

already exists in LogfAN s Cou e 646 operates during nighttime, transporting
emyANbusiness nd a nearby bus terminal; since the current demand of

c ntirely manageable by the bus operator, but a higher

Mréwthe help of information technologies by means of a

out a set of simulations to show the performance of the
overed by the existing MTA Line 646 at different demand




1 Introduction

Demands on transit agencies for improved and extended services are increasing. On
the other hand, there is little public support for increases in fares or subsidies. Therefore,
transit agencies are currently seeking ways to improve service flexibility in a cost-efficient
manner. @

Most bus transit systems fall into two broad categories: flﬁute and d
responsive transit (DRT) systems. According to the Nation Sum and
Trends (NTST) report for 2000, the average cost per s@ ip for ute bus

systems in the U.S. is $2.19 and a typical bus fare is $0.50.

contrary, for

DRT systems, the cost per passenger trip is $16.74,%shile a typic are is around $2-

3. Therefore, since DRT systems tend to be mu re cogtiypt loy, they are largely
limited to specialized operations such %a Ride % mandated under the
Americans with Disabilities Act (paratr @ oute bus systems are instead

much more cost efficient and they r ss gover t subsidy. This is primarily due

@ the consolidation of many passenger

to the passenger loading | e buse
trips onto a single vehicle (nQarlng)
, as an alternative to private automobiles,

However fixed- ro us trans

have major deﬁmenﬁ he ge lic considers the service to be inconvenient

because of its lac X|b|I|ty ' her the locations of pick-up and/or drop-off points
or the servi@edul h the individual rider’s desires. Moreover, the total trip
time is pe as be long and for longer trips there’s often a need of transfers

bet cles«
n the hahd, commercial demand responsive transit (DRT) systems, such as
taxicabs a s@ vans, provide much of the desired flexibility, but these improvements
in conve ome at a price. Taxicabs provide point-to-point pick-up and drop-off, and
ne -time scheduling; however, the cost per trip is not affordable on a regular basis for
@ple. Shuttle vans provide flexible pick-up points. However, drop-off points are
ed to popular locations and often advanced scheduling is required. These restrictions

on flexibility allow the shuttle vans to guarantee sufficient ridesharing to operate at a



reduced cost per trip compared to that of taxicabs; even so, shuttle vans are still a lot less
cost efficient than fixed-route bus transit systems.

Thus, there is a need for a transit system that provides flexible service at a cost
efficient price. The Mobility Allowance Shuttle Transit (MAST) system is an innovative
concept that merges the flexibility of DRT systems with the low cost operability of fixed-
route bus systems. A MAST service has a fixed base route that covers a spe |
geographic zone, with one or more mandatory checkpoints convenieftly located a
connection points or high density demand zones; the innovatj is th
appropriate slack time, buses are allowed to deviate from the th to nd drop
off passengers at their desired locations. The MAS sy m works a dynamic
environment since the majority of the requests occ Ie e bus BQH y (even though
reservations in advance are handled by the syst he o) on flexibility is
that the deviations must lie within a predetermigediistance flxed base route.

Such a system somewhat alrea S in a r ced and simplified scale. The
Metropolitan Transit Authority (MT (@

MAST as part of its feeder-line Llne 64
business hub in the San @ rea of Los

S Angele unty has recently introduced

nsports passengers between a large

County and a nearby bus terminal. The

area that Line 646 serv s |Ocated cl e Los Angeles harbor, and is one of the
county's busiest com{S hubs, g of several warehouses, factories and offices.
However, for saf ons, em s of local firms working on night shifts have been

finding it ex conveﬁl\ walk to and wait at a bus stop. Therefore, Line 646

offers a htline During daytime, this line serves as a fixed-route bus

syst ring httlm the line changes to a MAST service and allows specific
dewa%ns of from either side of the fixed route. Customers may call in to be
picked-up, ~ sk the operator to be dropped-off at their desired locations if within the

service
since*the current demand of line 646 is low, the bus operator is able to make all the
concerning accepting/rejecting customer requests and routing the vehicle.
rly, in case of heavier demand and several requests for deviations, the operator will not

be able to handle this task efficiently by himself/herself. An effective MAST system needs

to rely on recent developments in communication and computation technologies that allow



real-time information about pick-up/drop-off requests to be used to re-route the bus by
means of a scheduling algorithm.

There has been a significant amount of research in scheduling DRT systems, but we
are unaware of any work performed on scheduling systems such as the MAST service.
Although these two types of systems are related, DRT systems focus strictly on point—to-
point transport services, while the hybrid characteristic of the MAST service
additional and significant time and space constraints to the proble inly due t
of having the shuttle arrive at checkpoints on or before their sch %\

The purpose of this paper is to address this ga i earch nlty by
developing an insertion heuristic algorithm suitable fof a syste . insertion
heuristic approach is used because they are computationally fast ano% can easily handle

Isbergh, 2003)

The remainder of this paper is divided | Six seC@fns.” After reviewing the

complicating constraints in a dynamic environmen pbell

literature in Section 2, we define the MAS@em in Seelion 3 and the control parameters
needed to enhance the algorithm K ance in @Jn 4. Section 5 illustrates the
he expwntal results obtained by simulation.

">
2 Literaturerevi K 5\\'\

.
;@y menji : re is a significant body of work in the literature on
schedulin routing ystems. Desaulniers et al. (2000) and Savelsbergh and Sol

e @ed eview of the Pickup and Delivery problem and its related
prob S. M@thl work is intended for Dial-a-Ride systems for the delivery of the

pped. Due to the combinatorial nature of the problem, most of the

algorithm. In Section 6 we de

Section 7 provides conclusi

elderly an
research ocus on heuristic approaches.

joneering research on the Dial-a-Ride problem dates back to the seventies. Wilson

71) formulate the problem as a dynamic search procedure, inserting newly arriving
gsenger’'s origin and destination into the prospective route of one of the buses.
Continuing work is presented by Wilson and Hendrickson (1980). Stein (1977, 1978a,

1978b) develops a probabilistic analysis of the problem and Daganzo (1978) presents a



model to evaluate the performance of a Dial-a-Ride system. Theoretical studies for the
single-vehicle case include also the work by Psaraftis (1980, 1983a), Sexton and Bodin
(1985a, 1985b), Sexton and Choi (1986), Desrosiers et al. (1986) for exact algorithms and
the work of Psaraftis (1983b, 1983c) for heuristic approaches. The work of Daganzo
(1984) is somewhat similar to the MAST system describing a checkpoint DRT system that
combines the characteristics of both fixed route and door-to-door service. In a checkp
system, a service request is still made but the pick-up and drop-off poiRts are not at éﬂw
but at centralized locations called checkpoints. However, the M %em dib% a
checkpoint only system since it allows also for door-to-door r Q
Heuristics to solve multi-vehicle problems have oposed byg ftis (1986),
Jaw et al. (1986), Bodin and Sexton (1986) and rs et alg Min (1989)
considers a vehicle routing problem with smultan@, icku |v ies that involves
the definition of a capacity constraint. Dum (1991 t a column generation
scheme for optimally solving the Pickup a livery PraRlem with time windows. Local
search procedures are reported |n r Brugge@ al. (1993) and Healy and Moll
(1995). Madsen et al. (1995) re |nsert|o ristic. loachim et al. (1995) develop a
clustering algorithm. A si d annealin re is introduced by Hart (1996). A
parallel insertion heuristi |s p pos and Vigo (1997). Savelsbergh and Sol
(1998) propose three pp |mat|o ms derived from their branch-and-price based
optimal algorithm dorfer et . 99) propose heuristics to solve a transportation
problem of ed pe . Jrabu search techniques have been applied by Nanry and
Barnes ( ndne’ 001) and Cordeau and Laporte (2003). Teodorovich and
Rad y logic approach. Liand Lim (2001) propose a metaheuristic.
%an Q0 esent a two-phase method. A parallel regret insertion heuristic is
done by Dessouky (2003). Exact procedures to solve small problems can be
found in and Rodin (1997) and Lu and Dessouky (2003). Feuerstein and Stougie
(20 vestigate the best possible competitive ratio for an on-line single-server dial-a-ride
Uchimura et al. (2002) propose a hierarchical structure for demand responsive
‘ICGS. A simulation model for paratransit services can be found in Fu (2002).
Recent papers focus on the design of Dial-a-Ride services on a technologically
advanced basis. Dial (1995) proposes the implementation of a decentralized control



strategy for a fleet of vehicles. Horn (2002b) develops an algorithm for the scheduling and
routing of a fleet of vehicles that is embedded in a modeling framework for the assessment
of the performance of a general public transport system with the latter being presented in
Horn (2002a).

3 System definition @

The MAST system analyzed in this paper consists of %vehl %
ckpoints,

associated with a predefined schedule along a fixed r |ng of
identified byc=1, 2, ..., C; two of them are termlnals@d at t

he ies of the

route €=1 andc=C) and the remaining C-2 |nte dlate chec Qare distributed
along the route. We consider a loop system, h the v ing along the route
back and forth between 1 and C. A ridis defj a portlo%schedule beginning
at one of the terminals and ending )‘é
checkpoints; the vehicle’s schedule o&%ﬁ of Rri
corresponds to the start-ter follo e the total number of stops at
checkpoints is TC = (C-l)RQHence the & schedule’s array is represented by an
ordered sequence of t cheduled departure tigrevith ts.; > t)

(Ents of x em which can not be violated. We treat the

ne r visiting all the intermediate
d

ince the end-terminal of a ride

are assumed to be

departure tlmes checkp hard constraints since the checkpoints typically
represent nsfer d late arrivals to these stops will result in passengers
missing thé nectlon

rvic a is represented by a rectangular region defined by L*W, where L
(on thgx aX|s) tance between terminals 1 and C and W/2 (ondkis) is the

maximum ? deviation from the main route in either side (see Figure 1).

QO
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wo| < O

X C O
Figure 1 — MAST system K
Customer types
The MAST system can respond to f ent types ®f requests: regular pick-up

(P) and regular drop-off (D) representir% mers pi up/dropped off at checkpoints;
non-checkpoint pick-up (NP) and n C
picked up/dropped off at arg in the @area. Hence, we can categorize the

customers in four different ty 0
o an%& checkpoints

PN[O)ICk up a oint, drop-off at non-checkpoint

@ pIC -checkpoint, drop-off at checkpoint
ND&DIC drop-off at non-checkpoints

t any 'nt a customer may call in (or show up at checkpoints), specifying the
pick-up and drop-off points, and the MAST algorithm will attempt to

locations_of

place the fgguest in the schedule by means of an insertion procedure. We assume that

cu ars are immediately ready to be picked up at the moment of their request. However,
Q yStem could easily handle reservations for future pick-ups by limiting the search for

rtion in the portion of the schedule following the reservation time specified by the

kpoint dr (ND) representing customers

customer.



While checkpoints are identified ks~ 1,...,TC non-checkpoint customer request
(NP or ND) are identified bg = TC+1,...,TS where TS represents the current total number
of stops (including checkpoints and non-checkpoints). The indg) s=1,...,TS
represents the current position of any stom the schedule. The problem is then to
determine the indices(s), s=1,...,TS and the departure tintge$or non-checkpoint stops
s=TC+1, ..., TS while not violating the given departure timésr checkpoint stops=1,

.,TC. % 0
Slack time Qb
In order to allow deviations from the main rouG?erve NP a({ requests

between two consecutive checkpoints, identifieds +1, there ne be a certain

amount of slack time in the schedule. lsﬁa‘f ck g@ schedule and is

computed as follows:

Stss+1 - ts- ds&% : 1 seny NC-1 (1)

where bs is the vehicle spee 11 IS the@allowed at stopt+l for passengers’

boardings and dlsemlhr ts mggq istance betwesmands+1. As more pick-
ups and drop-offs off the b the slack is reducedi; J.gbe the available
slack that c to route s off the base route. Initially,

Q s=1,..,NC-1 (2)

\‘M
v

ldle I
e that the bus, driving from checkpsitdas+1, follows a no-idle policy
unt the Pequests in between them have been satisfied. The unused slask fime
stlll available when arriving to checkposil is spent as idle time (note that
the bus is idle a+1, new upcoming customer requests can still be inserted in the
sChedule before+1 usingst s+; if feasible and best at the moment, meaning that the bus

leaves s+1o serve the new requests and comes back tdefete §.1).



Arrival times
While ts represents the scheduled departure time atsstap defind’s as the arrival
time at stops. Because of the idle policy, we have for non-checkpoint swpsTC)
ts = t'sassuming that boarding and disembarking times are small and for checkpoint stops

(s <TC), t>t'sand their initial values are:

Ugt1 = tge1 - St;,,5+1 s=1,...,,NC-1 * (3)00

Busmotion

We assume that the bus followsegtilinear motiongallowiing the ve eQmove
only along the horizontal or vertical direction; thisV good appro ion of the real
world, since buses ride along streets which often grid.

Furthermore, whenever a horizontal oyertical directigg cah be equally chosen to
reach the next scheduled stop, the bu the oneﬁat keeps it closer to the central

axis of the service area. This beha.ﬁ| rantees er service to the future expected
demand under the assumption f@r distribL@of non-checkpoint requests.

N
,c\‘r
N\

.
%ST system mainly resides in defining the logic to

The challe@operati
.
best opera@hicle e@

need to,s asibility rules for any given customer at any point in time
bec ' rtingﬁv request in the vehicle’s schedule even if feasible at that time, might
F

not beybest o this purpose we introduce the concept of “buckets” and make use
of parametg are a function of the slack time and the relative position of the new

4 Control parameters\ 6

namic and multi-criteria environment. In particular we

request ect to the already scheduled stops.

lckets

The MAST insertion algorithm does not explicitly add a constraint to limit the

maximum allowable ride time of each customer as the Dial-a-Ride algorithms generally do.



Instead, it obtains a similar result working with “buckets”. The underlying concept is that
for PND and NPD type of customers one of the service points (either a P or a D checkpoint)
is already part of the schedule; therefore, given the time of the customer request, the
algorithm attempts to insert the corresponding ND and NP stops in the “vicinity” of the first
occurrence of those checkpoints in the schedule’s array. If not feasible, the algorithm
checks for insertion in the “vicinity” of the following occurrences of the checkpoint
interest, one by one, till feasibility is found. Clearly, this postpone causes a d Q
the whole trip, but the ride time will be upper bounded. *

In order to define buckets, let’'s consider the schedul as sh ble 1,
illustrating the checkpoints only with their correspondln sto mzdeEach omi
is scheduled to be visited by the bus a humber o ith dlﬁeﬂ%op indmes
(stop index of th&™ occurrence of checkpoiitin th&dule) n how many
rides (R) are planned.

For each intermediate checkpomt 0 C-1 th dices(c), which identify
them in the schedule, are computed \ llowing s @ nce:

k=1, ..., 1+R/2] (5)
k=1, ..., [R/2] (6)

@dule’s array such thafs(c)] < a(s) < a{sk+1(c)] for any allowable, as described in
uations (4), (5) and (6).



Table 1 — Schedule’s array and buckets

ride S Checkpoints ¢
/ 1 1
2 2
3 3
1
C C
" C-1 C-1
1° bucket oic=1 C C
C+1 C-1 '.
5 2(C-1)+1-¢-1) C ‘ ’
2C-2 2
K 2C-1
2C
2(C-1)+1+€-

o)

;i e bu inition for NPND type customers needs to be revised since they
Ch

C=R(C-1)+1 lorC

0

don't rely points for pick-ups and drop-offs; so we identify the buckets with the

rides. ally, let's characterize the sequence representing the occurrences of any

ter@che kpointd= 1 or C):
Q s(1\0)={1+(c-1)(k -1} k=1, ..., R+l @)

10



We have that, for NPND type customers, a bucket represents all thesstyeh that
a[sk(1\C)] = a(s) < afsk+1(1\C)] for any allowable las described in equation (7).

4.2 Usablesdack time

The slack time is a crucial resource needed to serve customers. When this res @
Is scarce, the system is not able anymore to properly satisfy new r g%s and it is Qd’t
postpone or reject them. Therefore, a MAST service needs to b ticularly
accepting customer requests that require a lot of slack ti ‘.I ption g future
requests from being fully satisfied. In fact, an insertion pears to t& at the time
of its placement in the schedule may very well no e so If we ¢ % future expected
customer requests. We therefore need to deflr%p é’

consumption of slack time.

properly controls the

st s+1 represents the current av % used sla time between two consecutive

checkpointss ands+1; while stSS+1 IS t time initi vallable before any insertion

has been performed. We d %)Ie slac&i@;S+1 as the maximum amount of
slack time that any customer uest is aII@to consume for its insertion betamdn
s+1. It represents arNJ boundt\ sable amount of slack time and it prevents a

of gt_ . is defined as a function of the future

S,s+1

single insertion frg sumlng t
expected de Weerar? %nd is not related to the actual unused slack sigme;

2., can e er or lower thas:1 depending on the circumstances. As

v&tlon feasibility section, a request will be allowed to consume the

and sis.q for its insertion.

S,5+1

minim vaIu@
hat the demand rat@ of requests per unit time in the service area
checkpoint’s requests (NP and ND) is uniformly distributed in the service

constant over time. The time interval between two checkpoamds+1 is

(wherexs and xs+1 are thex

: S X~ X,
s ands+1 and the total service area is given LXS 1|

coordinate values «f ands+1 with respect to the service area). Consequently, the expected

11



demand between s and sfttal # of insertion requests)s A, is estimated as follows (see

Figure 2):
X, = X,
Nss+1= )\|ST31 (ts+1-ts) (8)
L S
W s /\s,s+1 6
e - O

. {0
Figure 2 — Portion of service area co& by the S@ t between s and s+1

As soon as the vehicle depa@mts, the @cted residual demand drops

linearly until reaching the ze @atl. H@e expected residual demand as a
function of the current cIockQ&h A(ts?;i)l, n@

0 7AN ss+l \K now s
=N\ ‘& = tsj tsStnOWStsﬂ (9)

O ;

t toiq t

now

Figure 3 — Expected residual demand between s ands#afunction of.t,,

12



We define the parametez ;.1 as a function of the expected demand as follows:

7.

s,s+1

<1 (10)

/\ s,s+1 S,S+

79 -1
:1+( 55t | A\ltow) with 0 < 779

s,s+l

Since 0 <Al < Nss+1, We have thatr®, < 7gea<1 andn‘S+1 can be set accordlngly @

sstl — sstl —

We finally define the usable slack timst,,,, as follows:

Stss+1_ ”ss+1$t(s3)+1 Q K !11)

If the residual expected demanrkfts”éﬁl 0, then @'and <A Whereas,
when /\(;;ﬁ)1 attains its maximum/\s s+y, lg,s es |ts valu ss+l' and so
doesst,,,, = 77‘S+1 stSS+1
Combining equations @and (1 @nally derive the expression for the
usable slack timest,,,,, as a tion of.tw (s re 4):
\
o <1
@ Gy st L LStust, 12
ss+1 ow > Lsig
s+1 A

s s+1

O 9,5t
: t toq t

Figure 4 — Usable slack time

\4

now
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Let's now consider a non-checkpoint requgdbcated at the edge of the service
area, such thay; =0 ory; =W andxs< ¥ < X1 and let's assume that the schedule
betweens ands+1 is empty (no previously inserted stops). In order to be inserted, the
request would require an amount of slack tsyegiven by the time needed by the vehicle
to deviate from the axis, serve thg request and come back to thaxis &ty = W/bs+bty).

Since the minimum amount of usable slack time from equation (12) is given

st'.,, =79 st9  we need to havest' > sy, to prevent theq re t from bein

S,s+1 s,st+l S,s+1? sstl =

rejected. Hence we define: Q @

790" = (Whbsbtg)/ st C) \ (13)
N\ @Q

as the minimum value of7%, that guarante y non int requesd be

s,s+l

considered for insertion betweasnands+1 @the sched% empty, regardless of the

location of gas long as9o& xq < Xs+1. &I%
&r

Setting 77%,, < 799m" w t the al@m from working properly, because
some customers would be r ted not be% f system saturation or end of service, but
because of improperqa®ter settin early,

st..,, =0 for tnowgsreventin@quests befote from being considered for

insertion. C% ,)% causesst,,, = st(s‘,))+l at any time and customers
requests@ihave no

sen@g =0 would result in having

S

n the amount of slack time allowed to be consumed for their

inse% &
prop@e t7%),, in betweens7%9m" and 1 allows the system to control the
' ck time. Any request occurring befooan use at most the minimum

R

s,st+l s,S+1

because there is an expected demand of future customers that

sh e properly served with the remaining slack time. Whereas, if a customer request

durs towards the end of the ride frentos+1, it is allowed to consume a bigger portion

of the slack time until a maximum ot

S,Ss+1

because the chance of having additional

requests before the bus reaches the next checkpoins sety low.

14



4.3 Backtracking distance

The insertion procedure can cause the vehicle to drive back and forth with respect to
the direction of a ride, not only consuming the extra slack time, but also having a negative
impact on the customers already onboard, which may perceive this behavior as an
additional delay. Therefore, we limit the amount of backtracking in the schedule. Th
backtracking distance indicates how much the bus drives backwardg graxiee while c)

moving between two consecutive stops to either pick up or drop asseni r@n

t on-
checkpoint stop with respect to the direction of the current ri e formall e hown

nd b @that

ob, t tracking

in Figure 5, given any two consecutive stops id

a(a)+1 = a(b)] and the vectoraavb representing the di@c
distancebd, ; is defined as the negative componer@bhe prQ’ i@alo g the unit
vector &r , representing the direction of the @de r @ or viBg versa, parallel to the
x axis) as follows: 6 O

bd,, = —min , (14)

O Figure 5 — Backtracking distance
e gacktracking parameter (BACK > 0) is defined as the maximum allowable

b Qing distance that the bus can ride between any two consecutive stops. BACK is a
meter and can be set accordingly; clearly with BACK > L any backtracking is allowed.

15



5 Algorithm description

51 Feasiility

While evaluating a customer request, the algorithm needs to determine the
feasibility of the insertion of a new stop (let's identify it by g) between any two
consecutive stopa andb already scheduled. The extra time neededg¢for the msertlo
computed as follows:

Aagp= (dagtdqsda)/bs - b C)OQ KOIS)
a

Let checkpointsm and m+1 be the checkpomts b in the
schedule. The algorithm computes also t ckln gsand bdyp by
equation (14). Finally, it is feasible to inse aand

Ataqb< MINStn,me \% @ (16)
b, o< BACQ \, 17)

bdy, b< B (18)

The algorithm do &ed toc @zsmlhty with respect to the bus capacity because we

assume Itt

eO .

m
O+ ;
Q Figure 6 — Insertion feasibility of q

16



5.2 Cost function

When searching for the best insertion among the feasible ones, the algorithm
computes a COST for each of them and selects the one with the minimum value. Let's
assume that the insertion of a stppetweera andb is feasible and we need to compute its
COST. The system’s entities affected by an insertion are: @

» The customer requesting the insertion, in terms of h the ri
* The passengers already onboard and waiting t Q ped off ms of

how much longer they have to stay onboar( !

» The previously inserted customers in t e sC le Waltl plcked up at
the NP stops, in terms of how much thelr |s delayed and
also in terms of how much thelr |de

* The vehicle, in terms of how tra mil t has to drive.

Thus, the algorithm compu@followmwntl;les

o APT: the sum oV aII pass @of the extra ride time, including the ride
time of t mer re the insertion.
um over ssengers of the extra waiting time at the already
NP St

i ) the&un n is defined as:

@ BT = WAPT + Wwo* APW + Ws* Aty g (19)

wk:.ew ndws are the weights, which can be modified as needed to emphasize one

er the othersdt, 4, corresponds to the consumption of the slack time (the resource

aded by the system to serve more customers). During heavy demand periods, we should

assign a higher value to this scarce resource by increaswgh respect tav; andw,. In

17



contrast, during low demand periods, the opposite is true and the COST function should

emphasize more the service quality for the customers risiagdvwy overws.

5.3 Insertion procedure

<

PD type

PD type requests do not need any insertion procedure since_b@th pick-up a @
off points are checkpoints and they are already part of the sched %«ever, e PD
type customers are onboard, they are important in evalu e COS y other
insertion. @ K

PND type @.\ @Q

PND type customers need to have th gfapsertdd in the schedule. The

algorithm checks for insertion’s feasibili @e bucketsNpf the P checkpoint. Since the
ND stop can not be scheduled beforx, first buc@) e examined is the one starting

with the first occurrence of P fgllo e curre ition of the bus (bucket delimited by
S¢(P) and se+1(P) with K= (P ,St.t, ;) BRI Among the feasible insertions
between all pairs of Qn@ive stm Irst bucket, the algorithm selects the one
with the minimum CGQ’ and the@} he customer is therefore scheduled to be picked
up atse¢(P) ar%@i off a‘t@ inserted stpplf no feasible insertions are found in

heé alg

the first bu ts the procedure in the second bucket (assuming that the

% ori
custome@~ e pic ec@ the beginning of the second bucket corresponding to the
négf

Psc+1(P)). The process is repeated bucket by bucket until at least

follownccurre
one fe@asible i is found.

NP e

Q?D type customers need to have their NP giomserted in the schedule.
, the algorithm checks for insertion’s feasibility in the buckets of the D

@ckpoint. The first bucket to be examined is the one delimited by the current position of
the bus %, Wb) and the first occurrence of D following the current position of the B

18



with k= n?(insk.(D),s.t.t%(D)2tnow). In general, X,, Yp) doesn’t correspond to a stop.

Therefore, the first pair of points, between which the algorithm checks for feasibility, is
represented byx{, Y,) and the first stop to be visited afterwards, as shown in Figure 7.
Among the feasible insertions in the first bucket, the algorithm selects the one with the
minimum COST and then stops. The customer is therefore scheduled to be picked up at
inserted NP stop and dropped off & (D). If no feasible insertions are found in the firs @
bucket, the algorithm repeats the procedure in the second bucket ing the m%g)
be dropped off at the end of the second bucket, correspondieb‘ f@llowin rence
il

tle e feasible
insertion is found. \ Q{

Q.

\

@
as) ¥ @) a1
Figure %sertion fr@%nt bus position
'O 0
NPND type K \

A NP stomer @xs the insertion of two new sfjogsdq’; therefore
edure@\erformed by a8 procedure, meaning that for each

the insertio&
feasible @ion ofge @p the algorithm checks feasibility for the ND stgp A

to

of D, sc+1(D)). This process is repeated bucket by

NPN ibility i

The search fd D feasibility is performed with the additional constraint of hgving

schedul e g’
Recal that buckets correspond to the rides for a NPND type customer. The search

fo@ feasibility is performed in at most two consecutive buckets meaning that when
@ Ing for NP insertion feasibility in bucketand i+1, the algorithm looks for ND
ertion feasibility only in bucketand i+1

ted when both NP and ND insertions are simultaneously feasible.

The algorithm starts checking the NPND feasibility in the first bucket delimited by

the current position of the bug,(y,) and the end of the current ride This is the first
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occurrence in the schedule of one of the terminal checkpsistd ors = C, namely
s(1\g= rrlline(l\ C),s.t.ti(l\c) >t,.,- Among all feasible NPND insertions in the first

bucket, the algorithm selects the one with the minimum COST. If no NPND feasibility is
found, the algorithm will then check pairs of two consecutive buckets at a time, increasing
the “checking-range” by one bucket at each step (buckets 1/2, then buckets #/8]1,..,
etc.). While checking bucket&+1, we already know that NPND insertion is infeasible i
bucketi (because it has been already established before in the p ure while,c
bucketsi-1/i). Therefore, while NP insertion feasibility needs_t ﬁ Cc S|der

buckets (since NPND insertion infeasibility in buckeloes t P |n o be

continue till at least one NPND feasible insertion |s

Rejection policy Q 2

The general assumption while p br n procedure is a no-rejection
policy from both the MAST service & ecu

insert the customer requesq if nec 5@ he whole existing schedule bucket by
0

bucket, and rejection may r only if t er iIS¥ho feasibility at all. It may occur, for

feasible ini), ND insertion needs to be checked onIy iNNQu st TheQ dure will

hus, the algorithm attempts to

example with a very @I@‘uand r a customer request arrives towards the end
of the service. On t)ﬂ)t er han e tomers are assumed to never reject the insertion
t

proposed by the

customers Q\
54 date p@‘
Once? um COST feasible insertion is selected, a newgtiher a NP or a

nd e no negotiation between the MAST system and the

ND requeSk), has been successfully scheduled between two paimtb in a portion of the

delimited by checkpointsandm+1, and the variables of the system need to be

The slack time will be updated as follows:

Stnm+1= Stnm+1- Ata,q,b (20)
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The departure and arrival times will also be updated (delayed) as follows:

te=ts+ Aagp Os s.t.a(s)J[a(b), a(m+1)) (21)
Ps=ts+ Aagp Os s.t.a(s)J[a(b), a(m+1)] (22)

Since the departure timesof checkpointsg < TC) are constraints of the syste
and act as “time-barriers”, all the stops that are not in the portion of schedule w
insertion takes place (betweenandm+1) are not affected. We c re id

different cases:

e Customers having both pick-up and drop@ps sc@ fare

not affected by the insertion.

e Customers having their pick-up op -off stop in
betweeng andm+1 will have t é time |ncr ed because their drop-
off stop will be delayed as equ

» Customers having thel p stop beéwd their drop-off stop after

m+1 will not b@e@ by the@n because the departuretime

will remain unc

. Customqs ng botr; -up and drop-off stops in betwesamd
m+1 wi h bot delayed by the same amount as given by
equa (21) a Therefore their waiting time at the pick-up stop
Q&I & inc

fterm+1 will have their waiting time at the pick-up stop increased

re eir ride time will remain unchanged.
s er@heir pick-up stop in betwegesndm+1 and their drop-
off s&
en Dy equation (21) and their ride time decreased by the same amount
Ase their drop-off stop will not be affected.
%stomers having both their pick-up and drop-off stops aftet will not
O be affected.
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Time windows
The algorithm provides customers at the time of the request with time windows for
their pick-up and drop-off locations. To do so, it computes the earliest departure time from

q, et, as follows:

ety = ta + dagbs + b, (23) @

wheret, represents the current departure time from atopglso the ﬁ timeég
initialized likewise: O O
\l :‘ :'QK (24)

It can easily be shown that &t a lower bound fof a :urther u of t
The algorithm then computes the Iat@eparture % froty gs follows:

_ N
Ity = ety + Stum @ @ (25)
N

We prove thattq is an upper boyn the following contradiction argument.

.
Let's use the supers§1 B= 0{} indicate thed" update of a variable and

h
suppose that? > @ aved -t .. We also know by equation (21) that:
.

tq@'tq«@}ﬁ)_tqw%"‘ )=
f
:A&At/#. LAt = ) AL (26)
k=1

and fro@nions (24) and (2gt,? = ltgetly = Stnmes, but this would imply

f
Z@Stn,mﬂ meaning that the sum of the extra time needed for insertions after the

ty = ta+ dadbs + bt = ety

@rtion of ghad exceeded the total slack time available after the insertioaraf this is a
contradiction since the feasibility check would have prevented this from happening.
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Therefore equation (25) says that future possible insertions betwaedq will delayt, to
a maximum total amount of time bounded by the currently available slack time.

In a similar fashion, the earliest and latest arrival tireégandlt’ 4, are computed.
As a result, the customer, once accepted, is providedetyijtiy, et'y andlt’ q knowing that

their actual timesytand ty, will be bounded by these values:

ety st <t (27)QC)
ety st <lt, Q 6
While a P request hat- = tp = Itp because the departur@ time from’@kpoint is
a constant in a MAST system, a D request will halv t'p <It'p. C P and ND

requests will also havelyp <'typ <ltyp and etyp <t6 Q~
6 Experimental results @ é

In this section we dis t@sults 0@ by simulation analysis. The target is
to show that the insertion he®istic develo@" his paper can be a used as an efficient
scheduling tool for re( ystem t its performance on a simulation model of
the actual MAST s |ce repre MTA Line 646 in Los Angeles. In order to
perform this tas rst negd

ier ;
e def. foIIowmg performance parameters for a MAST system:

e the MAST system’s performance measures.

PT: average ride time per passenger
O * PW: average extra waiting timg - etyp) over NP requests only

Q « M: total miles driven by the bus
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These three indicators are directly related to the corresponding terms of the COST function
in Equation (19)4PT, A4PW, 4t, 4 Thus, we can similarly define the overall performance

Z of a MAST system as:
Z = w*PT*NCr + wo*PW*NCpp + ws*M/bs (29)

where NG and NG stand respectively for the total number of custogners and t%gﬂ
number of NP customer requests (NPD and NPND types) serQ e sysb IS in

time units. O
In addition, let’s define: < ,
 PI: average time interval betweer®\uest/s @n;earliest pick-up
time (et or etp) per passenger
1

* PST: percentage of the togald | slack tgﬂ)consumed

maximum demand thz{a%e con‘fi% an satisfy without becoming unstable. This
level can be estimat%ey king a \ alues. Given that the demand is uniform over
time, for systems low their"SatO¥ation level, the PI values should be around half the

]

Given a total deman (customersj\&& we define tBaturation leveks the

rger value of PI, but constant over the simulation time,

b
headway o system.
shows th %&system r the saturation level, but still below it. Even if a few
cus Qve tggliait longer to be picked up due to temporary congestions created by the
rancw;]ess Q S and, the system on average is stable. If instead the PI value
increases mulation time, then the system is unstable and the demand rate is above
the satu vel. An indication of how much the demand rate is below the saturation
ley, iven by the PST; values around 90% indicate that the demand rate is more or less

@tion level. In addition, since the slack time consumption is directly proportional to
iles driven, the PST and M values are related to each other. Therefore, bigger values

of M also indicate a higher level of saturation.
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6.2 Algorithm performance

As earlier noted, a MAST service already exists in San Pedro in Los Angeles
County, Line 646. San Pedro is one of Los Angeles County's busiest commercial hubs,
consisting of several warehouses, factories and offices. Bus lines offer regular fixed-route
service in the area during the daytime. However, for safety reasons, employees of Io@

firms working on night shifts have been finding it extremely inconvenjent to walk to &nd

wait at a bus stop. Therefore, MTA Line 646 offers a MAST s during i@e,
Pedro aearby bus
terminal. Q) O
The MAST system represented by Line 646 gons f a sin cle covering a
No termin ﬁpomts and one

service area with L =10 miles and W =1 mile,

transporting passengers between one of the business areas 4

intermediate checkpoint located in the middle. ratio ride is 30 minutes and

the headway is 1 hour. The service oper es) each night. Given that

4.5 hou&fQ
bs = 25 miles/hour, the system has v i& slack ti .5 minutes, fos =1, ...,

TC-1; therefore about 6 minutes @ ), allow ery few insertions of non-checkpoint
requests, but this is justifie ery low demand (4-5 customers/hour, most of

them being of type PND D) T “jight” conditions allow the bus operator to
easily make all the d conce epting/rejecting customer requests and routing
the vehicle since tem nee eal with only 2-3 insertion requests per ride.
sted m g the MAST concept for higher demand levels.
However, currer’ vel, the system will not be able to accommodate more
ordef to evaluate the performance of the insertion algorithm for the

A summary. . rameters values that are used in the experiments are shown in Table 2.

QO

ref in
heydemand hs e perform the simulation experiments assuming a larger slack time.
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Table 2 — System parameters

L 10 miles
W 1 mile
C 3

dss+1 (=1, ..., TC-1)5 miles
tss1-t (s=1,..., TC-1)25 min  =0)

bs 25 miles/hour @
bts (s=1,...,TS) | 18sec
Wy / Wo [ W 0.25/0.5/0.2%

From equation (1) we compute the values of the initial slac@— 12. 7&

(s=1 , TC-1) that are about 50% of the time i r between onsecutive

checkpomts departure timeg.{ - ts = 25 minutes).

In setting the COST function’s weights, v%sume t@o ers perceive the
waiting time at stopsal) with more discomfor n%he ride tirn€ on the bug é@nd that
slack time consumptiomg) and passeng ‘tlmslq aréNgqually weighted.

Given a total demand ra@(c /hour) co t over time, we also assume

that the customer types are Q as sho @lble 3:
N @e 3 - Cu@e distribution

NPD NPND
40% 40% 10%
The e distribe assumes that most of the customers need to be transported

v%esi ed location (home/office) and vice versa (PND and NPD types)
r Line 646. We further assume that the checkpoint requests (P and

fro poin
as actyally is

e uniformly distributed in the service area. The simulation is run for 50

tributed among the C checkpoints and that non-checkpoint requests

e verified that this length of simulation time was sufficiently long to have all the
Ance parameters converge to their steady-state values for stable systems. According
e parameter values shown in Table 2, the total number of rides R = 60.

We first perform a set of runs setting the control parameters BACK =L and

”(0

s,stl

=1 (for all s=1,...,TC-1) allowing any backtracking and any slack time
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consumption if available, thus giving the most freedom to the algorithm when checking for
insertion feasibility. At these parameter settings (configurations A) we seek the saturation
level of the system, by examining the Pl and PST values for different values of the demand

6. The results are shown in Table 4.

Table 4 — Saturation level for configurations A

Configuration Al | A2 A3 * 0
@ (customers/hour) | 15 20 25 IQ 6

BACK (miles) L L O
A% s=1,..,TC1 1 1 1 K

P1 (min) . § s

PST (%)
saturation level?
PW (min)

PT (min)

M (miles)

The findings show that the s a@e el is ﬁr(@O customers/hour (configuration

A2). While Al is a stable s relatively f saturation (PST = 81.3%), A2 is right
at the boundary beca{s P vaIu ig"higher than half the headway (50 minutes), but it
system is stable, but since the slack time

doesn’t increase o i ; .
consumption is V 1gh (PST o) it is near the demand limit. Anything above

6=20 WOU@ syst \ ity as shown by the results from A3, where the Pl value
eps

is very hig ke sing with the simulation run time and the PST is close to

100 x
herefq allowing more slack time in the scheduhéf’;(l =12.7 minutes

instead %) ., TC-1) and setting BACK = L amd?,, = 1 (configurations A),
e b ould be able to serve a demahdith up to 20 customers/hour assuming
mer type distribution of Table 3.

Now, keeping the demand at the saturation level (configuration A2), we want to

observe the effect of modifying the usable slack tstig,,. For this purpose, maintaining

BACK =L, we vary the values of? wn (foralls=1, ..., TC-1) in the range from 1 to
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779min (configurations B) to observe the effect of this control parameter. We compare the

S,st+l
performances of each case by means on the object function, Z, as defined in equation (29).
The simulation run time is again 50 hours. Each configuration is tested with exactly the
same demand using CNR (Common Random Numbers). The results are summarized in

0)min

Table 5. From equation (13).,," is approximately equal to 0.22. @

Table 5 — Effect o7

sstl

Configuration Bl1=A2 B2
@ (customers/hour)
BACK (miles)

% s=1, .. TC-]

S,s+1
Pl (min)
PST (%)
saturation level?
PW (min)
PT (min)
M (miles)
Z

The figures re@ positivé@of decreasirf}, from 1 to almostrz{dm".

meters & antly improve their values, with the exception of

All the performanQ
PW, showi@ a prog@ut then a progressive worsening. Also the Z values
n

dre ir minimum value with configuration 85’7@l 0o.3,

graduall;é
sligh ter t Imn " pue to the increased efficiency of the algorithm, all the

S+1
@

ad™™ values, indicating a better performance in terms of the slack time

configdrations well below their saturation levels. Note that configuration B6 has

consumptiog, but the overall performance Z shows a worsening of the service quality with

res @ 0 B5. These results show the benefit of controlling the consumption of slack time

saving some of it for future insertions.
Now, starting from configuration B5, we’d like to observe the effect of limiting the

backtracking distance. We perform another set of simulations (configurations C), keeping
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6=20 and 77(505+l = 0.3 and varying the BACK parameter from L to 0. The results are

shown in Table 6.

Table 6 — Effect of BACK - configurations C

Configuration Cl=B% C2 C3 C4 C5| C6 C7 C8 @
f(customersihour)] 20 | 20 | 20| 20| 20| 20 | 20 | 20 0
BACK (miles) L | 15| 08 0
79 s=1,...7c] 03 | 03| 03

Pl (min) 52.26 | 52.26 52.35

PST (%) 76.6% | 76.6%75.8%

saturation level? below belovbelow

PW (min) 141 | 141 L 39

PT (min) 22.60 | 22.60 22.62

M (miles) 951.5 | 951.5 946 4

Z 6533 | 6533

There are no changes in th @rmance b ering the value of the BACK
parameter from L (configurati to 5 miles (C2). This means that in the
simulation there are no cas an insertio a backtracklng distance bigger than 1.5
miles. Therefore, sett|n AC to a Q‘ than 1.5 has no effect on the schedule.

On the contrary, imp e ts in a & rformance measures can be progressively seen

in cases C3, C4 C6 (B .8, 0.5, 0.3 and 0.2) while C7 and C8 (BACK =0.1
and 0) sho@ alues_fo and M, but the overall performance Z slightly worsens
due to the sing va f PW and PT. All the cases are well below their saturation
leve onfigufation according to Z is found by setting BACK = 0.2 miles,
corr(%lm 6. These experiments illustrate the positive effect of limiting to a

certain deg ount of backtracking that the bus is allowed to do.
% represents a better configuration than A2 with respect to the overall
nce” Z and almost all the other parameters (with the exception of PW, slightly
@j In particular, the improved efficiency of the algorithm causes the M and PST

w es to drop and the system is now well below saturation. We therefore look for the new

saturation level for these more efficient parameter settings by performing another set of
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runs (configurations D, see Table 7) starting from configuration C6 and progressively

increasingd.

Table 7 — New saturation level - configurations D

Configuration D1=Cé D2 | D3 @
@ (customers/hour) 20 25 30

BACK (miles) 02 | 02 | 02 0
n9%,s=1,..,7C-1 03 | 03 | 03 t
PI (min) 52.23 | 55.98 | 77.

PST (%) 72.4% | 86.8% #95.9 O
saturation level? below yes W\aboye K

PW (min) 1.37 1& .92 Q
PT (min) 22.28 29.0 @

M (miles) 924. 10

As done for configurations A @can estif@te the saturation level for

configurations D by looking at the stdbi f the Pl v over the simulation time. The
figures show thatd= 25 cust @r (D2) a @mately represent the limit for the
system. Anything above thi§gfalue would instability. Therefore, the adjustments

L *

made on the control par ters aIIow@ tion heuristics to handle a demand rate 25%
larger than the initial in

«presented an insertion heuristic for scheduling Mobility Allowance
T) services. The algorithm allows customers to place a request, and

ides them with time windows for both pick up and drop off points. Due

parameters, and demonstrate that the algorithm can be used as an effective method to

automate scheduling of this line and other similar services.
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Future research on MAST systems could focus on finding lower bounds on the cost
function through exact mathematical approaches, improving the solution by introducing
local search techniques, studying the system under different demand distributions and
stochastic environments, finding the optimal slack time for a given demand distribution,
developing heuristics for the multiple bus MAST system to handle day-time heavy demand

environments and comparing MAST systems to conventional transportation services !f

fixed-route bus or DRT. % 0
8 Acknowledgements C)O

The research reported in this paper was parti supported éQNatlonal Science

Foundation under grant NSF/USDOT- 0231665. oul
Shuttle, Inc. for providing us with data on Li EfQ

0

Q

to thank Operation

L@
\{}QO

&
Q

QC)

31



Appendix

Notation
r 1, ..., R] rides’ index
C 1, ..., C] checkpoints’ index
S [1,...,TC, ..., TS] stops’index
s(c) [1, ..., TC] stops’ index of thé'koccurrence o€
a(s) [1, ..., TS] schedule's sequence index
L, W length, width of service area
R, C total # of rides, total # of checkpoints
TS, TC | total # of stops, total # of stops at ch
(%, Yb) | current position of the bus
thow current time
bts boardings/disembarkment time
bs bus speed
ts, ts departure/arrival times

earliest departure, arriva

ensands’
and s’

nts s and s+1

average extra waiting time over NP requests

total miles driven

overall performance

total demand rate in service area

non-checkpoints’ demand rate in service area

expected demand in sector between checkpoints s an

slack time parameter

variables’ update index
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