Stagnation and Dynamic Pressures

Learning Objectives:

- Explain the concept of the stagnation pressure
- Define the static, dynamic and total pressures
- Explain how a pitot tube measures velocity
- State the conservation of mass for a steady, incompressible flow

Motivational Question:

- Where is the highest pressure in a flow field?
Stagnation Pressure: largest pressure obtainable along a streamline.

\[V_B = 0 \] since fluid is stagnant in tube.

Bernoulli Eqth along \(AB \):

\[p_A + \frac{1}{2} \rho V_A^2 + \rho g z_A = p_B + \frac{1}{2} \rho V_B^2 + \rho g z_B \]

\[z_A = z_B \quad V_B = 0 \quad z_B > z_A \]

\[p_B = p_A + \frac{1}{2} \rho V_A^2 \]

\(\downarrow \) Stagnation pressure.

Static, Dynamic & Total Pressure:

\[\rho + \frac{1}{2} \rho V^2 + \rho g z = c \quad \text{along } s. \]

All have units of pressure.

\(\rho g z \): static or hydrostatic pressure (recall Ch. 2).

\(\frac{1}{2} \rho V^2 \): dynamic pressure

\(\rho \): thermodynamic pressure

Pressure measured by a probe moving along with fluid.

\(c \): total pressure.

\(\Rightarrow \) constant along \(s \). Pressure can change forms, but total pressure is conserved.
Pitot-static Tube:

How can we measure $\frac{V^2}{2g}$?

ρ_A, V_A free stream

$P_B = $ stagnation pressure

$P_B = \rho_A + \frac{1}{2} \rho V_A^2$

$P_c = P_A$ since $V_c = V_A$

$P_D = P_c$

$\therefore V_A = \sqrt{2\left(P_B - P_D\right)/\rho}$

See pitot-tubes on p. 109 in textbook.

Design issues:

Free-stream pressure taps at C require fabrication care.

- $P_c > P_A$ (blockage)
- $P_c < P_A$ (acceleration)
- $P_c = P_A$ (good design)
Conservation of Mass:

\[m_i = \text{mass flux into container} \]
\[= \int_A \rho \mathbf{V} \cdot \hat{n} \, dA \]
\[\text{unit normal of surface of opening.} \]
If \(V = \text{const.} \), \(g = \text{const.} \),
\[= g V_1 A_1 \]

Continued.

\[m_2 = \text{mass flux out of container.} \]
\[= g V_2 A_2 \quad (V = \text{const.}) \]

At steady state, mass in container is constant.

\[\frac{dM}{dt} = m_2 - m_1 = 0 \]
\[\Rightarrow g V_1 A_1 = g V_2 A_2 \]
If \(g = \text{const.} \),
\[\Rightarrow V_1 A_1 = V_2 A_2 \]