ENGR 212-503
Conservation Principles in Thermal Sciences

Homework #1 Course administration and concept questions

Date distributed : 9.1.2003
Date due : 9.8.2003 at 5:00 pm

Return your solution either in class or in my mail box (WERC Rm. 235H) by the date shown above. Please show all your work and follow the rules outlined in the course syllabus.

1 Set up NEO account

Periodically, I may need to send emails to the class or to individual students. Since I only have access to your NEO email address, you need to set up email forwarding to another account if you are not in the practice of checking your NEO email. Please do one of the following:

- If you regularly check your NEO account: do nothing.
- If you do not check your NEO account regularly: log on to NEO, select the link in the upper right corner for [Directory], select the Edit link in the upper right corner underneath the statement logged in as..., click the radio button for is forwarded to and type in the email address you regularly check.

On Thursday I will send a test email to your NEO account. If you do not receive an email from me, please consult the Computer Help Desk at 845-8300 and ask me to send you another email after you properly configure your account.

If email forwarding does not work for emails I send to the class roster, you will have to regularly check your NEO account.

2 Return of graded material

If you are in agreement, please sign the statement I am circulating through the class allowing me to return your homeworks as a bundle, allowing me to place them in a box outside my office so that you can have open access to them, and allowing me to email grades through CENotes. If you do not sign the agreement, you will have to see me or the TA during office hours to receive your graded assignments.
3 Problems from Ch. 1

6C Why is heat transfer a nonequilibrium phenomenon?

21C Most of the energy generated in the engine of a car is rejected to the air by the radiator through the circulating water. Should the radiator be analyzed as a closed system or as an open system? Explain.

(The figure associated with this question shows water flowing into the radiator at the top and out of the radiator at the bottom.)